Introduction to fractional linear systems. Part 1: Continuous-time case

被引:97
作者
Ortigueira, MD
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, P-114 Monte De Caparica, Portugal
[2] Univ Nova Lisboa, P-114 Monte De Caparica, Portugal
[3] INESC, P-1000 Lisbon, Portugal
来源
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING | 2000年 / 147卷 / 01期
关键词
D O I
10.1049/ip-vis:20000272
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the paper, the class of continuous-time linear systems is enlarged with the inclusion of fractional linear systems. These are systems described by fractional differential equations. It is shown how to compute the impulse, step, and frequency responses from the transfer function. The theory is supported by definitions of fractional derivative and integral, generalisations of the usual. hn introduction to fractal signals as outputs of fractional differintegrators is presented. It is shown how to define a stationary fractal.
引用
收藏
页码:62 / 70
页数:9
相关论文
共 27 条
[1]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[2]  
Campos L., 1990, Int. J. Math. Math. Sci, V13, P481, DOI DOI 10.1155/S0161171290000709
[3]   ON A CONCEPT OF DERIVATIVE OF COMPLEX-ORDER WITH APPLICATIONS TO SPECIAL-FUNCTIONS [J].
CAMPOS, LMBC .
IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 33 (02) :109-133
[4]   AC RESPONSE OF FRACTAL NETWORKS [J].
CLERC, JP ;
TREMBLAY, AMS ;
ALBINET, G ;
MITESCU, CD .
JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (19) :L913-L924
[5]  
Decarlo R. A., 1989, Linear Systems: A State Variable Approach with Numerical Implementation
[6]   Modal synthesis when modeling damping by use of fractional derivatives [J].
Fenander, A .
AIAA JOURNAL, 1996, 34 (05) :1051-1058
[7]   DAMPING DESCRIPTION INVOLVING FRACTIONAL OPERATORS [J].
GAUL, L ;
KLEIN, P ;
KEMPLE, S .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1991, 5 (02) :81-88
[8]  
Henrici P., 1977, Special FunctionsIntegral Transforms-Asymptotics-Continued Fractions, V2
[9]  
Kalia R. N., 1993, RECENT ADV FRACTIONA
[10]   1/F NOISE [J].
KESHNER, MS .
PROCEEDINGS OF THE IEEE, 1982, 70 (03) :212-218