Overview of object oriented data analysis

被引:2
作者
Marron, J. Steve [1 ]
Alonso, Andres M. [2 ,3 ]
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[2] Univ Carlos III Madrid, Dept Stat, E-28903 Getafe, Spain
[3] Univ Carlos III Madrid, INEACU, E-28903 Getafe, Spain
关键词
Data objects; Functional data analysis; Non-Euclidean; Principal components; HIGH-DIMENSION; RIEMANNIAN-MANIFOLDS; PRINCIPAL; PCA; CONSISTENCY; STATISTICS; COMPONENTS; REDUCTION; MATRICES; MACHINE;
D O I
10.1002/bimj.201400113
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Object oriented data analysis is the statistical analysis of populations of complex objects. In the special case of functional data analysis, these data objects are curves, where a variety of Euclidean approaches, such as principal components analysis, have been very successful. Challenges in modern medical image analysis motivate the statistical analysis of populations of more complex data objects that are elements of mildly non-Euclidean spaces, such as lie groups and symmetric spaces, or of strongly non-Euclidean spaces, such as spaces of tree-structured data objects. These new contexts for object oriented data analysis create several potentially large new interfaces between mathematics and statistics. The notion of object oriented data analysis also impacts data analysis, through providing a framework for discussion of the many choices needed in many modern complex data analyses, especially in interdisciplinary contexts.
引用
收藏
页码:732 / 753
页数:22
相关论文
共 87 条
[51]   On Consistency and Sparsity for Principal Components Analysis in High Dimensions [J].
Johnstone, Iain M. ;
Lu, Arthur Yu .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) :682-693
[52]  
Jolliffe I., 2002, PRINCIPAL COMPONENT, DOI [10.1007/978-1-4757-1904-8_7, 10.1016/0169-7439(87)80084-9]
[53]   Analysis of principal nested spheres [J].
Jung, Sungkyu ;
Dryden, Ian L. ;
Marron, J. S. .
BIOMETRIKA, 2012, 99 (03) :551-568
[54]   PRINCIPAL ARC ANALYSIS ON DIRECT PRODUCT MANIFOLDS [J].
Jung, Sungkyu ;
Foskey, Mark ;
Marron, J. S. .
ANNALS OF APPLIED STATISTICS, 2011, 5 (01) :578-603
[55]   PCA CONSISTENCY IN HIGH DIMENSION, LOW SAMPLE SIZE CONTEXT [J].
Jung, Sungkyu ;
Marron, J. S. .
ANNALS OF STATISTICS, 2009, 37 (6B) :4104-4130
[57]   MULTIDIMENSIONAL-SCALING BY OPTIMIZING GOODNESS OF FIT TO A NONMETRIC HYPOTHESIS [J].
KRUSKAL, JB .
PSYCHOMETRIKA, 1964, 29 (01) :1-27
[58]  
LEBLANC M, 1994, J AM STAT ASSOC, V89, P53
[59]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791
[60]   Robust principal component analysis for functional data [J].
N. Locantore ;
J. S. Marron ;
D. G. Simpson ;
N. Tripoli ;
J. T. Zhang ;
K. L. Cohen ;
Graciela Boente ;
Ricardo Fraiman ;
Babette Brumback ;
Christophe Croux ;
Jianqing Fan ;
Alois Kneip ;
John I. Marden ;
Daniel Peña ;
Javier Prieto ;
Jim O. Ramsay ;
Mariano J. Valderrama ;
Ana M. Aguilera ;
N. Locantore ;
J. S. Marron ;
D. G. Simpson ;
N. Tripoli ;
J. T. Zhang ;
K. L. Cohen .
Test, 1999, 8 (1) :1-73