Algebraic entropy for smooth projective varieties

被引:0
作者
Shuddhodan, K., V [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
HYPERKAHLER MANIFOLDS; SURFACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the spectral radius for the action of a self map f of a smooth projective variety (over an arbitrary base field) on its ladic cohomology is achieved on the f* stable sub-algebra generated by any ample class. This generalizes a result of Esnault-Srinivas who had obtained an analogous result for automorphisms of surfaces. Over C we also show that this sub-algebra is naturally an irreducible representation of a Looijenga-Lunts-Verbitsky type Lie algebra acting on the cohomology of a smooth projective variety.
引用
收藏
页码:851 / 869
页数:19
相关论文
共 26 条
  • [1] Andre Y, 2004, INTRO MOTIFS PANORAM, V17
  • [3] Deligne P., 1980, I HAUTES ETUDES SCI, V52, P137
  • [4] Deligne P., 1977, Lecture Notes in Mathematics, P569
  • [5] Dinaburg E., 1971, MATH USSR IZV, V5, P337, DOI [10.1070/IM1971v005n02ABEH001050, DOI 10.1070/IM1971V005N02ABEH001050]
  • [6] Esnault H, 2013, OSAKA J MATH, V50, P827
  • [7] Fulton W, 1998, Ergebnisse der Math., V2, DOI 10.1007/978-1-4612-1700-8
  • [8] Green M, 2021, Arxiv, DOI arXiv:1906.03432
  • [9] Gromov M., 2003, ENSEIGN MATH, V49, P217
  • [10] Hrushovski E., PREPRINT