High-dimensional autocovariance matrices and optimal linear prediction

被引:22
作者
McMurry, Timothy L. [1 ]
Politis, Dimitris N. [2 ]
机构
[1] Univ Virginia, Dept Publ Hlth Sci, Charlottesville, VA 22908 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Autocovariance matrix; time series; prediction; spectral density; COVARIANCE-MATRIX; OPTIMAL RATES; REGULARIZATION; CONVERGENCE;
D O I
10.1214/15-EJS1000
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new methodology for optimal linear prediction of a stationary time series is introduced. Given a sample Xi,, the optimal linear predictor of Xn+1 is (X) over tilde (n+1) = phi(1)(n)X-n + phi(2)(n)Xn-1+...+phi(n)(n)X-1. In practice, the coefficient vector phi(n) equivalent to (phi(1)(n), phi(2)(n), ..., phi(n)(n))' is routinely truncated to its first p components in order to be consistently estimated. By contrast, we employ a consistent estimator of the n x n auto-covariance matrix Gamma(n) in order to construct a consistent estimator of the optimal, full-length coefficient vector phi(n). Asymptotic convergence of the proposed predictor to the oracle is established, and finite sample simulations are provided to support the applicability of the new method. As a by-product, new insights are gained on the subject of estimating Gamma(n) via a positive definite matrix, and four ways to impose positivity are introduced and compared. The closely related problem of spectral density estimation is also addressed.
引用
收藏
页码:753 / 788
页数:36
相关论文
共 31 条
[1]  
Basu S., 2014, PREPRINT, DOI DOI 10.1007/s00454-002-2885-2
[2]  
Baxter G., 1962, MATH SCAND, V10, P137, DOI DOI 10.7146/MATH.SCAND.A-10520
[3]  
BAXTER G., 1963, ILLINOIS J MATH, V7, P97
[4]   Regularized estimation of large covariance matrices [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (01) :199-227
[5]   Banded regularization of autocovariance matrices in application to parameter estimation and forecasting of time series [J].
Bickel, Peter J. ;
Gel, Yulia R. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 :711-728
[6]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[7]  
Brent R. P., 1980, J. Algorithms, V1, P259
[8]   OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION [J].
Cai, T. Tony ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2012, 40 (05) :2389-2420
[9]   Optimal rates of convergence for estimating Toeplitz covariance matrices [J].
Cai, T. Tony ;
Ren, Zhao ;
Zhou, Harrison H. .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 156 (1-2) :101-143
[10]   MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER l1-NORM [J].
Cai, T. Tony ;
Zhou, Harrison H. .
STATISTICA SINICA, 2012, 22 (04) :1375-1378