Deep learning-based color holographic microscopy

被引:42
作者
Liu, Tairan [1 ,2 ,3 ]
Wei, Zhensong [1 ]
Rivenson, Yair [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Zhang, Yibo [1 ,2 ,3 ]
Wu, Yichen [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSD, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
color holography; computational microscopy; deep learning; digital holography; neural networks;
D O I
10.1002/jbio.201900107
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report a framework based on a generative adversarial network that performs high-fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing-phase-related artifacts, and generates an accurate color transformation for the reconstructed image. Our framework is experimentally demonstrated using lung and prostate tissue sections that are labeled with different histological stains. This framework is envisaged to be applicable to point-of-care histopathology and presents a significant improvement in the throughput of coherent microscopy systems given that only a single hologram of the specimen is required for accurate color imaging.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Design of a Deep Learning-Based Metalens Color Router for RGB-NIR Sensing [J].
Mu, Hua ;
Zhang, Yu ;
Liang, Zhenyu ;
Gao, Haoqi ;
Xu, Haoli ;
Wang, Bingwen ;
Wang, Yangyang ;
Yang, Xing .
NANOMATERIALS, 2024, 14 (23)
[32]   A Deep Learning-Based Surface Defects Detection and Color Classification Method for Solar Cells [J].
Zhang, Huimin ;
Zhao, Yang ;
Huang, Shuangcheng ;
Kang, Huifeng ;
Han, Haimin .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (09)
[33]   Deep Learning-based Color Compensation Method for Projected Images in Combat Assistant System [J].
Zhang F. ;
Zhang C. ;
Yang H. ;
Wang F. .
Zhang, Chao (zhangchao@cust.edu.cn), 1600, China Ordnance Industry Corporation (42) :2418-2423
[34]   Deep Learning-Based Artistic Inheritance and Cultural Emotion Color Dissemination of Qin Opera [J].
Yu, Han .
FRONTIERS IN PSYCHOLOGY, 2022, 13
[35]   DIFFERENT COLOR SPACES IN DEEP LEARNING-BASED WATER SEGMENTATION FOR AUTONOMOUS MARINE OPERATIONS [J].
Taipalmaa, Jussi ;
Passalis, Nikolaos ;
Raitoharju, Lenni .
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, :3169-3173
[36]   Deep Learning-based Text-in-Image Watermarking [J].
Karki, Bishwa ;
Tsai, Chun-Hua ;
Huang, Pei-Chi ;
Zhong, Xin .
2024 IEEE 7TH INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL, MIPR 2024, 2024, :376-382
[37]   On the Deep Learning-based Age Prediction of Color Fundus Images and Correlation with Ophthalmic Diseases [J].
Wen, Yang ;
Chen, Leiting ;
Qiao, Lifeng ;
Deng, Yu ;
Zhou, Chuan .
2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, :1171-1175
[38]   Deep Learning-Based Channel Prediction With Path Extraction [J].
Meliha, Mehdi ;
Charge, Pascal ;
Wang, Yide ;
Bouzid, Salah Eddine ;
Henry, Christophe ;
Bourny, Christophe ;
Tomaz, Henrique ;
Chen, Yejian .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (03) :891-895
[39]   A Comprehensive Study of Deep Learning-based Covert Communication [J].
Anand, Ashima ;
Singh, Amit Kumar .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (02)
[40]   Deep learning-based forecasting of aggregated CSP production [J].
Segarra-Tamarit, Jorge ;
Perez, Emilio ;
Moya, Eric ;
Ayuso, Pablo ;
Beltran, Hector .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 184 :306-318