Deep learning-based color holographic microscopy

被引:42
作者
Liu, Tairan [1 ,2 ,3 ]
Wei, Zhensong [1 ]
Rivenson, Yair [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Zhang, Yibo [1 ,2 ,3 ]
Wu, Yichen [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSD, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
color holography; computational microscopy; deep learning; digital holography; neural networks;
D O I
10.1002/jbio.201900107
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report a framework based on a generative adversarial network that performs high-fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing-phase-related artifacts, and generates an accurate color transformation for the reconstructed image. Our framework is experimentally demonstrated using lung and prostate tissue sections that are labeled with different histological stains. This framework is envisaged to be applicable to point-of-care histopathology and presents a significant improvement in the throughput of coherent microscopy systems given that only a single hologram of the specimen is required for accurate color imaging.
引用
收藏
页数:12
相关论文
共 50 条
[11]   Application of Deep Learning in Digital Holographic Microscopy [J].
Meng Zhang ;
Ding Hao ;
Nie Shouping ;
Ma Jun ;
Yuan Caojin .
LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (18)
[12]   Deep learning-based fast multispectral Fourier ptychographic microscopy [J].
Chen, Jiurun ;
Sui, Fengze ;
Chen, Muyao ;
Xu, Yang ;
Huang, Qiang ;
Chen, Yanqi ;
Xu, Fannuo ;
Song, Zhen ;
He, Yonghong .
OPTICS AND LASER TECHNOLOGY, 2025, 192
[13]   Deep learning-based single-shot structured illumination microscopy [J].
Zhang, Qinnan ;
Chen, Jiawei ;
Li, Jiaosheng ;
Bo, En ;
Jiang, Heming ;
Lu, Xiaoxu ;
Zhong, Liyun ;
Tian, Jindong .
OPTICS AND LASERS IN ENGINEERING, 2022, 155
[14]   Deep learning-based spectroscopic single-molecule localization microscopy [J].
Gaire, Sunil Kumar ;
Daneshkhah, Ali ;
Flowerday, Ethan ;
Gong, Ruyi ;
Frederick, Jane ;
Backman, Vadim .
JOURNAL OF BIOMEDICAL OPTICS, 2024, 29 (06)
[15]   Deep Learning-Based Composite Fault Diagnosis [J].
An, Zining ;
Wu, Fan ;
Zhang, Cong ;
Ma, Jinhao ;
Sun, Bo ;
Tang, Bihua ;
Liu, Yuanan .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) :572-581
[16]   Deep Learning-Based Multimedia Analytics: A Review [J].
Zhang, Wei ;
Yao, Ting ;
Zhu, Shiai ;
El Saddik, Abdulmotaleb .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (01)
[17]   Deep learning-based time series forecasting [J].
Song, Xiaobao ;
Deng, Liwei ;
Wang, Hao ;
Zhang, Yaoan ;
He, Yuxin ;
Cao, Wenming .
ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
[18]   Deep Learning-Based Wave Overtopping Prediction [J].
Alvarellos, Alberto ;
Figuero, Andres ;
Rodriguez-Yanez, Santiago ;
Sande, Jose ;
Pena, Enrique ;
Rosa-Santos, Paulo ;
Rabunal, Juan .
APPLIED SCIENCES-BASEL, 2024, 14 (06)
[19]   Deep learning-based spike sorting: a survey [J].
Meyer, Luca M. ;
Zamani, Majid ;
Rokai, Janos ;
Demosthenous, Andreas .
JOURNAL OF NEURAL ENGINEERING, 2024, 21 (06)
[20]   Deep Consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy [J].
Sanchez-Garcia, Ruben ;
Segura, Joan ;
Maluenda, David ;
Maria Carazo, Jose ;
Sorzano, Carlos Oscar S. .
IUCRJ, 2018, 5 :854-865