Deep learning-based color holographic microscopy

被引:38
|
作者
Liu, Tairan [1 ,2 ,3 ]
Wei, Zhensong [1 ]
Rivenson, Yair [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Zhang, Yibo [1 ,2 ,3 ]
Wu, Yichen [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSD, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
color holography; computational microscopy; deep learning; digital holography; neural networks;
D O I
10.1002/jbio.201900107
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report a framework based on a generative adversarial network that performs high-fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing-phase-related artifacts, and generates an accurate color transformation for the reconstructed image. Our framework is experimentally demonstrated using lung and prostate tissue sections that are labeled with different histological stains. This framework is envisaged to be applicable to point-of-care histopathology and presents a significant improvement in the throughput of coherent microscopy systems given that only a single hologram of the specimen is required for accurate color imaging.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Application of Deep Learning in Digital Holographic Microscopy
    Meng Zhang
    Ding Hao
    Nie Shouping
    Ma Jun
    Yuan Caojin
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (18)
  • [12] Deep learning-based spectroscopic single-molecule localization microscopy
    Gaire, Sunil Kumar
    Daneshkhah, Ali
    Flowerday, Ethan
    Gong, Ruyi
    Frederick, Jane
    Backman, Vadim
    JOURNAL OF BIOMEDICAL OPTICS, 2024, 29 (06)
  • [13] Deep learning-based single-shot structured illumination microscopy
    Zhang, Qinnan
    Chen, Jiawei
    Li, Jiaosheng
    Bo, En
    Jiang, Heming
    Lu, Xiaoxu
    Zhong, Liyun
    Tian, Jindong
    OPTICS AND LASERS IN ENGINEERING, 2022, 155
  • [14] Deep learning-based time series forecasting
    Song, Xiaobao
    Deng, Liwei
    Wang, Hao
    Zhang, Yaoan
    He, Yuxin
    Cao, Wenming
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [15] Deep Learning-Based Multimedia Analytics: A Review
    Zhang, Wei
    Yao, Ting
    Zhu, Shiai
    El Saddik, Abdulmotaleb
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (01)
  • [16] Deep learning-based structural health monitoring
    Cha, Young-Jin
    Ali, Rahmat
    Lewis, John
    Buyukozturk, Oral
    AUTOMATION IN CONSTRUCTION, 2024, 161
  • [17] A Deep Learning-Based Indoor Odor Compass
    Yan, Zheng
    Meng, Qing-Hao
    Jing, Tao
    Chen, Si-Wen
    Hou, Hui-Rang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [18] A Deep Learning-Based Detection of Wrinkles on Skin
    Deepa, H.
    Gowrishankar, S.
    Veena, A.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 25 - 37
  • [19] Deep Consensus, a deep learning-based approach for particle pruning in cryo-electron microscopy
    Sanchez-Garcia, Ruben
    Segura, Joan
    Maluenda, David
    Maria Carazo, Jose
    Sorzano, Carlos Oscar S.
    IUCRJ, 2018, 5 : 854 - 865
  • [20] Deep learning-based spike sorting: a survey
    Meyer, Luca M.
    Zamani, Majid
    Rokai, Janos
    Demosthenous, Andreas
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (06)