Deep learning-based color holographic microscopy

被引:38
|
作者
Liu, Tairan [1 ,2 ,3 ]
Wei, Zhensong [1 ]
Rivenson, Yair [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Zhang, Yibo [1 ,2 ,3 ]
Wu, Yichen [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSD, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
color holography; computational microscopy; deep learning; digital holography; neural networks;
D O I
10.1002/jbio.201900107
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report a framework based on a generative adversarial network that performs high-fidelity color image reconstruction using a single hologram of a sample that is illuminated simultaneously by light at three different wavelengths. The trained network learns to eliminate missing-phase-related artifacts, and generates an accurate color transformation for the reconstructed image. Our framework is experimentally demonstrated using lung and prostate tissue sections that are labeled with different histological stains. This framework is envisaged to be applicable to point-of-care histopathology and presents a significant improvement in the throughput of coherent microscopy systems given that only a single hologram of the specimen is required for accurate color imaging.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep Learning-Based Holographic Polarization Microscopy
    Liu, Tairan
    de Haan, Kevin
    Bai, Bijie
    Rivenson, Yair
    Luo, Yi
    Wang, Hongda
    Karalli, David
    Fu, Hongxiang
    Zhang, Yibo
    FitzGerald, John
    Ozcan, Aydogan
    ACS PHOTONICS, 2020, 7 (11): : 3023 - 3034
  • [2] Deep learning-based quantitative phase microscopy
    Wang, Wenjian
    Ali, Nauman
    Ma, Ying
    Dong, Zhao
    Zuo, Chao
    Gao, Peng
    FRONTIERS IN PHYSICS, 2023, 11
  • [3] Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view
    Byeon, Hyeokjun
    Go, Taesik
    Lee, Sang Joon
    OPTICS AND LASER TECHNOLOGY, 2019, 113 : 77 - 86
  • [4] Development of deep learning-based holographic ultrasound generation algorithm
    Lee, Moon Hwan
    Hwang, Jae Youn
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2021, 40 (02): : 169 - 175
  • [5] Deep Learning-Based Machine Color Emotion Generation
    Nie, Tongyao
    Lv, Xinguang
    INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2023, 14 (01)
  • [6] Deep learning-based image processing in optical microscopy
    Sindhoora Kaniyala Melanthota
    Dharshini Gopal
    Shweta Chakrabarti
    Anirudh Ameya Kashyap
    Raghu Radhakrishnan
    Nirmal Mazumder
    Biophysical Reviews, 2022, 14 : 463 - 481
  • [7] Deep learning-based image processing in optical microscopy
    Melanthota, Sindhoora Kaniyala
    Gopal, Dharshini
    Chakrabarti, Shweta
    Kashyap, Anirudh Ameya
    Radhakrishnan, Raghu
    Mazumder, Nirmal
    BIOPHYSICAL REVIEWS, 2022, 14 (02) : 463 - 481
  • [8] Color Holographic Microscopy Using a Deep Neural Network
    Liu, Tairan
    Wei, Zhensong
    Rivenson, Yair
    de Haan, Kevin
    Zhang, Yibo
    Wu, Yichen
    Ozcan, Aydogan
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [9] Quantitative Phase Imaging Using Deep Learning-Based Holographic Microscope
    Di, Jianglei
    Wu, Ji
    Wang, Kaiqiang
    Tang, Ju
    Li, Ying
    Zhao, Jianlin
    FRONTIERS IN PHYSICS, 2021, 9
  • [10] Deep learning-based color transfer biomedical imaging technology
    Bian Y.
    Xing T.
    Deng W.
    Xian Q.
    Qiao H.
    Yu Q.
    Peng J.
    Yang X.
    Jiang Y.
    Wang J.
    Yang S.
    Shen R.
    Shen H.
    Kuang C.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (02):