Random matrix ensembles with column/row constraints: I

被引:11
作者
Shukla, Pragya [1 ]
Sadhukhan, Suchetana [1 ]
机构
[1] Indian Inst Technol, Dept Phys, Kharagpur 721302, W Bengal, India
关键词
random matrix; fluctuations; constraints; PERTURBATION-THEORY; BROWNIAN-MOTION; STATISTICS; TRANSITION; POISSON; SPECTRA; MODEL; INTEGRALS; SYSTEMS;
D O I
10.1088/1751-8113/48/41/415002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze statistical properties of a complex system subjected to conditions which manifests through specific constraints on the column/row sum of the matrix elements of its Hermitian operators. The presence of additional constraints besides real-symmetric nature leads to new correlations among their eigenfunctions, hinders a complete delocalization of dynamics and affects the eigenvalues too. The statistical analysis of the latter indicates the presence of a new universality class analogous to that of a special type of Brownian ensemble appearing between Poisson and Gaussian orthogonal ensemble.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Integrable random matrix ensembles
    Bogomolny, E.
    Giraud, O.
    Schmit, C.
    NONLINEARITY, 2011, 24 (11) : 3179 - 3213
  • [2] Localization-delocalization transitions in bosonic random matrix ensembles
    Chavda, N. D.
    Kota, V. K. B.
    ANNALEN DER PHYSIK, 2017, 529 (07)
  • [3] Random Matrix Ensembles Associated with Lax Matrices
    Bogomolny, E.
    Giraud, O.
    Schmit, C.
    PHYSICAL REVIEW LETTERS, 2009, 103 (05)
  • [4] Floquet thermalization: Symmetries and random matrix ensembles
    Regnault, Nicolas
    Nandkishore, Rahul
    PHYSICAL REVIEW B, 2016, 93 (10)
  • [5] Multifractal dimensions for critical random matrix ensembles
    Mendez-Bermudez, J. A.
    Alcazar-Lopez, A.
    Varga, Imre
    EPL, 2012, 98 (03)
  • [6] Rotationally invariant family of Levy-like random matrix ensembles
    Choi, Jinmyung
    Muttalib, K. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (15)
  • [7] Universality of a family of random matrix ensembles with logarithmic soft-confinement potentials
    Choi, Jinmyung
    Muttalib, K. A.
    PHYSICAL REVIEW B, 2010, 82 (10)
  • [8] Spectral statistics of Bernoulli matrix ensembles-a random walk approach (I)
    Joyner, Christopher H.
    Smilansky, Uzy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (25)
  • [9] Statistical analysis of chiral structured ensembles: Role of matrix constraints
    Mondal, Triparna
    Shukla, Pragya
    PHYSICAL REVIEW E, 2019, 99 (02)
  • [10] Duality in random matrix ensembles for all β
    Desrosiers, Patrick
    NUCLEAR PHYSICS B, 2009, 817 (03) : 224 - 251