Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water

被引:58
作者
Yuan, Tao [1 ]
Sun, Luyang [1 ]
Wu, Ziwei [1 ]
Wang, Rong [1 ]
Cai, Xu [1 ]
Lin, Wei [1 ]
Zheng, Meifang [1 ,2 ]
Wang, Xinchen [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou, Peoples R China
[2] Fujian Sci & Technol Innovat Lab Chem Engn China, Quanzhou, Peoples R China
基金
国家科技攻关计划; 中国国家自然科学基金;
关键词
CATALYTIC ASYMMETRIC HYDROGENATION; SILICA-GEL; REDUCTION; NITRIDE; DEHYDROGENATION; POTENTIALS; ANTHRACENE; CONVERSION; DEFECTS; LITHIUM;
D O I
10.1038/s41929-022-00886-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The direct reduction of inert planar arenes and heteroarenes with visible light remains rarely explored, as the energy of one visible-light photon is unable to overcome the stabilization of aromatics. Here we report a system based on boron carbonitride semiconductor, which can reduce arenes and heteroarenes in water under blue light irradiation. The system features the advantage of low-cost, high-efficiency, facile separation, benign environmental profile and broad substituent tolerance. The methodology can be extended to late-stage functionalization and/or deuteration of drugs, hormones and axially chiral compounds with conserved chirality. Moreover, gram-scale synthesis is successfully implemented with catalyst recycling. Mechanistic investigations support a consecutive blue-light-induced energy and electron transfer process, which accumulates sufficient energy to reduce arenes to arene anions by absorbing two photons successively. The metal-free system introduces a simple and sustainable reactivity mode for semiconductor photocatalysts and enriches the chemical toolkit for a class of demanding and valuable organic transformations.
引用
收藏
页码:1157 / 1168
页数:12
相关论文
共 59 条
[1]   REDUCTION OF ORGANIC COMPOUNDS BY LITHIUM IN LOW MOLECULAR WEIGHT AMINES .1. SELECTIVE REDUCTION OF AROMATIC HYDROCARBONS TO MONOOLEFINS [J].
BENKESER, RA ;
ROBINSON, RE ;
SAUVE, DM ;
THOMAS, OH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1955, 77 (12) :3230-3233
[2]   The Birch reduction in organic synthesis [J].
Birch, AJ .
PURE AND APPLIED CHEMISTRY, 1996, 68 (03) :553-556
[3]   Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran [J].
Burrows, James ;
Kamo, Shogo ;
Koide, Kazunori .
SCIENCE, 2021, 374 (6568) :741-+
[4]   A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles [J].
Chakraborty, Sumit ;
Brennessel, William W. ;
Jones, William D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (24) :8564-8567
[5]   Asymmetric Hydrogenation of Pyridinium Salts with an Iridium Phosphole Catalyst [J].
Chang, Mingxin ;
Huang, Yuhua ;
Liu, Shaodong ;
Chen, Yonggang ;
Krska, Shane W. ;
Davies, Ian W. ;
Zhang, Xumu .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) :12761-12764
[6]   Birch-Type Photoreduction of Arenes and Heteroarenes by Sensitized Electron Transfer [J].
Chatterjee, Anamitra ;
Koenig, Burkhard .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (40) :14289-14294
[7]   Pd-catalyzed asymmetric hydrogenation of fluorinated aromatic pyrazol-5-ols via capture of active tautomers [J].
Chen, Zhang-Pei ;
Chen, Mu-Wang ;
Shi, Lei ;
Yu, Chang-Bin ;
Zhou, Yong-Gui .
CHEMICAL SCIENCE, 2015, 6 (06) :3415-3419
[8]   Organocatalyzed Birch Reduction Driven by Visible Light [J].
Cole, Justin P. ;
Chen, Dian-Feng ;
Kudisch, Max ;
Pearson, Ryan M. ;
Lim, Chern-Hooi ;
Miyake, Garret M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (31) :13573-13581
[9]   Ammonia-free Birch reductions with sodium stabilized in silica gel, Na-SG(I) [J].
Costanzo, Michael J. ;
Patel, Mitul N. ;
Petersen, Kathryn A. ;
Vogt, Paul F. .
TETRAHEDRON LETTERS, 2009, 50 (39) :5463-5466
[10]   Photocatalytic (Het)arylation of C(sp3)-H Bonds with Carbon Nitride [J].
Das, Saikat ;
Murugesan, Kathiravan ;
Rodriguez, Gonzalo J. Villegas ;
Kaur, Jaspreet ;
Barham, Joshua P. ;
Savateev, Aleksandr ;
Antonietti, Markus ;
Koenig, Burkhard .
ACS CATALYSIS, 2021, 11 (03) :1593-1603