Floating Bodies in Neutral Equilibrium

被引:5
|
作者
Finn, Robert [1 ]
Sloss, Mattie [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Capillarity; contact angle; floating criteria; convex bodies; neutral equilibrium;
D O I
10.1007/s00021-008-0269-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In his paper preceding in this issue, Finn proved that if the contact angle gamma of a convex body B with a given liquid is pi/2, and if B can be made to float in "neutral equilibrium" in the liquid in any orientation, then B is a metric ball. The present work extends that result, with an independent proof, to any contact angle in the range 0 < gamma < pi. Our result is equivalent to the general geometric theorem that if for every orientation of a plane, it can be translated to meet a given strictly convex body B in a fixed angle gamma within the above range, then B is a metric ball.
引用
收藏
页码:459 / 463
页数:5
相关论文
共 50 条
  • [1] Remarks on “Floating Bodies in Neutral Equilibrium”
    Robert Finn
    Journal of Mathematical Fluid Mechanics, 2009, 11
  • [2] On bodies floating in equilibrium in every orientation
    Ryabogin, Dmitry
    GEOMETRIAE DEDICATA, 2023, 217 (04)
  • [3] Remarks on "Floating Bodies Subject to Capillary Attractions"
    Finn, Robert
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (03) : 464 - 465
  • [4] Remarks on “Floating Bodies Subject to Capillary Attractions”
    Robert Finn
    Journal of Mathematical Fluid Mechanics, 2009, 11
  • [5] Mechanics of floating bodies
    Beig, Robert
    Schmidt, Bernd G.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2255):
  • [6] Ulam floating bodies
    Huang, Han
    Slomka, Boaz A.
    Werner, Elisabeth M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 425 - 446
  • [7] Separation bodies: a conceptual dual to floating bodies
    Schneider, Rolf
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (01): : 157 - 170
  • [8] Capillary surfaces and floating bodies
    Josef Bemelmans
    Giovanni P. Galdi
    Mads Kyed
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1185 - 1200
  • [9] Duality of Floating and Illumination Bodies
    Mordhorst, Olaf
    Werner, Elisabeth M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (05) : 1507 - 1541
  • [10] A variational formula for floating bodies
    McCuan, John
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 231 (01) : 167 - 191