High-throughput development of Na2ZnSiO4-based hybrid electrolytes for sodium-ion batteries

被引:12
作者
Johari, Nur Sofina Mohamad [1 ]
Jonderian, Antranik [2 ]
Jia, Shipeng [2 ]
Cozea, Victor [2 ]
Yao, Elissa [2 ]
Adnan, Syed Bahari Ramadzan Syed [3 ]
Ahmad, Noraini [4 ]
McCalla, Eric [2 ]
机构
[1] Univ Malaya, Inst Adv Studies, Kuala Lumpur, Malaysia
[2] McGill Univ, Dept Chem, Montreal, PQ, Canada
[3] Univ Malaya, Ctr Fdn Studies Sci, Kuala Lumpur, Malaysia
[4] Univ Malaya, Fac Sci, Dept Chem, Kuala Lumpur, Malaysia
基金
加拿大自然科学与工程研究理事会;
关键词
Ceramic-ionic liquid hybrid electrolyte; High-throughput screening; Ionic and electronic conductivity; Electrochemical stability; Sodium-ion battery; Quasi-solid-state electrolyte; ELECTRICAL-PROPERTIES; SOLID-ELECTROLYTE; CONDUCTIVITY; TEMPERATURE; MECHANISMS; NANOIONICS; TRANSPORT; PROGRESS; STORAGE;
D O I
10.1016/j.jpowsour.2022.231706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid sodium-ion batteries are a very attractive technology for large scale applications such as grid storage. Herein, a hybrid solid-state electrolyte (HybSSE) made of halloysite clay-derived Na2ZnSiO4 ceramic and ionic liquid is developed by way of high-throughput methods. This involved making over 700 ceramics in order to both optimize the synthesis and screen 22 different substituents at 8 different substitution levels. This work yielded HybSSE with ionic conductivities as high as 0.453 mS cm(-1) at room temperature and 2.27 mS cm(-1) at 48 degrees C. This is an important improvement by a factor of nearly 20 over those reported previously. The improved ionic conductivities now make this HybSSE a viable candidate for quasi-solid Na-ion batteries. Further screening of electronic conductivity shows that dendrite growth within all tested HybSSEs is not expected to be a concern, nor is electrochemical instability on the cathode side. By contrast, all HybSSEs are found to be unstable against sodium metal, with the lowest decomposition potential being 0.8 V vs. Na. Thus, sodium metal anodes are not feasible here without the use of a buffering layer. The results therefore represent important improvements in this class of electrolytes and also guide future research and development.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Hybrid Electrolytes Enabling in-situ Interphase Protection and Suppressed Electrode Dissolution for Aqueous Sodium-Ion Batteries [J].
Wang, Hao ;
Liu, Tingting ;
Du, Xiaofan ;
Wang, Jinzhi ;
Yang, Yuanyuan ;
Qiu, Huayu ;
Lu, Guoli ;
Li, Hongliang ;
Chen, Zheng ;
Zhao, Jingwen ;
Cui, Guanglei .
BATTERIES & SUPERCAPS, 2022, 5 (10)
[32]   Comprehensive Study of PAN-NaBF4 Solid Polymer Electrolytes: Insights Into Optical, Structural, Thermal, Electrical, and Electrochemical Properties for Sodium-Ion Batteries [J].
Venkanna, Mekala ;
Singh, Pramod K. ;
Rasheed, Hussein K. H. ;
Kareem, Aseel A. ;
Song, Shufeng ;
Savilov, Serguei V. ;
Polu, Anji Reddy .
ENERGY STORAGE, 2024, 6 (08)
[33]   Hybrid catalyst-assisted synthesis of multifunctional carbon derived from Camellia shell for high-performance sodium-ion batteries and sodium-ion hybrid capacitors [J].
Mao, Hanshu ;
Yang, Sisi ;
Yang, Yingjun ;
Yang, Jinyue ;
Yuan, Guizhi ;
Zheng, Mingtao ;
Hu, Hang ;
Liang, Yeru ;
Yu, Xiaoyuan .
CARBON NEUTRALIZATION, 2024, 3 (04) :673-688
[34]   Reduced Na2+xTi4O9/C Composite: A Durable Anode for Sodium-Ion Batteries [J].
De Sloovere, Dries ;
Safari, Mohammadhosein ;
Elen, Ken ;
D'Haen, Jan ;
Drozhzhin, Oleg A. ;
Abakumov, Artem M. ;
Simenas, Mantas ;
Banys, Juras ;
Bekaert, Jonas ;
Partoens, Bart ;
Van Bael, Marlies K. ;
Hardy, An .
CHEMISTRY OF MATERIALS, 2018, 30 (23) :8521-8527
[35]   Interpenetrating network of titania and carbon ultrafine fibers as hybrid anode materials for high performance sodium-ion batteries [J].
Udomsanti, Ponlawat ;
Vongsetskul, Thammasit ;
Limthongkul, Pimpa ;
Tangboriboonrat, Pramuan ;
Subannajui, Kittitat ;
Tammawat, Phontip .
ELECTROCHIMICA ACTA, 2017, 238 :349-356
[36]   Na2MnSiO4 as an attractive high capacity cathode material for sodium-ion battery [J].
Law, Markas ;
Ramar, Vishwanathan ;
Balaya, Palani .
JOURNAL OF POWER SOURCES, 2017, 359 :277-284
[37]   Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries [J].
Barpanda, Prabeer ;
Liu, Guandong ;
Ling, Chris D. ;
Tamaru, Mao ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Yamada, Atsuo .
CHEMISTRY OF MATERIALS, 2013, 25 (17) :3480-3487
[38]   A stable and superior performance of Na3V2(PO4)3/C nanocomposites as cathode for sodium-ion batteries [J].
Hu, Fangdong ;
Jiang, Xiaolei .
INORGANIC CHEMISTRY COMMUNICATIONS, 2020, 115
[39]   High sodium ion conductivity of glass ceramic electrolytes with cubic Na3PS4 [J].
Hayashi, Akitoshi ;
Noi, Kousuke ;
Tanibata, Naoto ;
Nagao, Motohiro ;
Tatsumisago, Masahiro .
JOURNAL OF POWER SOURCES, 2014, 258 :420-423
[40]   Solid-state sodium-ion batteries with composite polymer electrolytes and ALD-modified Na0.7MnO2 cathodes [J].
Helaley, Ahmad ;
Liang, Xinhua .
CHEMICAL ENGINEERING JOURNAL, 2025, 514