Fast covariance estimation for sparse functional data

被引:42
作者
Xiao, Luo [1 ]
Li, Cai [1 ]
Checkley, William [2 ]
Crainiceanu, Ciprian [3 ]
机构
[1] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[2] Johns Hopkins Univ, Sch Med, Baltimore, MD USA
[3] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
关键词
Bivariate smoothing; FACEs; fPCA; LONGITUDINAL DATA; PRINCIPAL-COMPONENTS; LINEAR-MODELS; P-SPLINES; REGRESSION;
D O I
10.1007/s11222-017-9744-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Smoothing of noisy sample covariances is an important component in functional data analysis. We propose a novel covariance smoothing method based on penalized splines and associated software. The proposed method is a bivariate spline smoother that is designed for covariance smoothing and can be used for sparse functional or longitudinal data. We propose a fast algorithm for covariance smoothing using leave-one-subject-out cross-validation. Our simulations show that the proposed method compares favorably against several commonly used methods. The method is applied to a study of child growth led by one of coauthors and to a public dataset of longitudinal CD4 counts.
引用
收藏
页码:511 / 522
页数:12
相关论文
共 38 条
[1]  
[Anonymous], 2003, Semiparametric Regression
[2]  
[Anonymous], 1978, A Practical Guide to Splines
[3]  
[Anonymous], TECHNICAL REPORT
[4]   PRINCIPAL COMPONENTS-ANALYSIS OF SAMPLED FUNCTIONS [J].
BESSE, P ;
RAMSAY, JO .
PSYCHOMETRIKA, 1986, 51 (02) :285-311
[5]   Simultaneous non-parametric regressions of unbalanced longitudinal data [J].
Besse, PC ;
Cardot, H ;
Ferraty, F .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (03) :255-270
[6]   Functional linear mixed models for irregularly or sparsely sampled data [J].
Cederbaum, Jona ;
Pouplier, Marianne ;
Hoole, Phil ;
Greven, Sonja .
STATISTICAL MODELLING, 2016, 16 (01) :67-88
[7]   A Penalized Spline Approach to Functional Mixed Effects Model Analysis [J].
Chen, Huaihou ;
Wang, Yuanjia .
BIOMETRICS, 2011, 67 (03) :861-870
[8]  
Diggle PJ., 2002, ANAL LONGITUDINAL DA
[9]   Simple fitting of subject-specific curves for longitudinal data [J].
Durbán, M ;
Harezlak, J ;
Wand, MP ;
Carroll, RJ .
STATISTICS IN MEDICINE, 2005, 24 (08) :1153-1167
[10]   Flexible smoothing with B-splines and penalties [J].
Eilers, PHC ;
Marx, BD .
STATISTICAL SCIENCE, 1996, 11 (02) :89-102