Are Metal Halide Perovskite Solar Cells Ready for SpaceApplications?

被引:24
作者
Hoang, Minh Tam [1 ,2 ]
Yang, Yang [1 ,2 ]
Tuten, Bryan [1 ,2 ]
Wang, Hongxia [1 ,2 ]
机构
[1] Queensland Univ Technol, Fac Sci, Sch Chem & Phys, Brisbane, Qld 4001, Australia
[2] Queensland Univ Technol, Ctr Mat Sci, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会;
关键词
THERMAL-STABILITY; RADIATION HARDNESS; EFFICIENT; LIGHT; DEGRADATION; PERSPECTIVES; TOLERANCE; ULTRATHIN; AEROGELS; POLYMER;
D O I
10.1021/acs.jpclett.2c00386
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The appeal of metal halide perovskite solar cells (PSCs) has been widelydemonstrated in thefield of photovoltaic technology. On account of the excellent opticaland electrical properties, as well as compatibility withflexible substrates, the PSCs alsohold the highest record of specific power for lightweight solar cell devices, suggestingexcellent promise in space applications. Hence, there is increasing interest in theperformance of PSCs in space environments where radiation beams and thermal cyclingcan cause extreme stress on the devices. In this Perspective, we provide a brief summary ofthe research on PSCs for space applications. The radiation tolerance and thermal stabilityof PSCs and the fundamental mechanisms are discussed and analyzed. Key challengesfacing PSC technology toward future space applications are demonstrated. ThisPerspective features the prospect of PSCs as the next frontier in space PV technology.
引用
收藏
页码:2908 / 2920
页数:13
相关论文
共 96 条
[1]   SnO2/TiO2 Electron Transporting Bilayers: A Route to Light Stable Perovskite Solar Cells [J].
Abuhelaiqa, Mousa ;
Shibayama, Naoyuki ;
Gao, Xiao-Xin ;
Kanda, Hiroyuki ;
Nazeeruddin, Mohammad Khaja .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (04) :3424-3430
[2]  
Andreev VM, 2003, PRACTICAL HANDBOOK OF PHOTOVOLTAICS: FUNDAMENTALS AND APPLICATIONS, P417, DOI 10.1016/B978-185617390-2/50017-9
[3]  
[Anonymous], 2014, STAND QUAL QUAL REQ
[4]   Various structures based on Nickel oxide thick films as gamma radiation sensors [J].
Arshak, K ;
Korostynska, O ;
Fahim, F .
SENSORS, 2003, 3 (06) :176-186
[5]   A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells [J].
Ava, Tanzila Tasnim ;
Al Mamun, Abdullah ;
Marsillac, Sylvain ;
Namkoong, Gon .
APPLIED SCIENCES-BASEL, 2019, 9 (01)
[6]  
Bailey S, 2012, PRACTICAL HANDBOOK OF PHOTOVOLTAICS: FUNDAMENTALS AND APPLICATIONS, 2ND EDITION, P863
[7]   100°C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes [J].
Baranwal, Ajay K. ;
Kanaya, Shusaku ;
Peiris, T. A. Nirmal ;
Mizuta, Gai ;
Nishina, Tomoya ;
Kanda, Hiroyuki ;
Miyasaka, Tsutomu ;
Segawa, Hiroshi ;
Ito, Seigo .
CHEMSUSCHEM, 2016, 9 (18) :2604-2608
[8]   Radiation Hardness of Perovskite Solar Cells Based on Aluminum-Doped Zinc Oxide Electrode Under Proton Irradiation [J].
Barbe, Jeremy ;
Hughes, Declan ;
Wei, Zhengfei ;
Pockett, Adam ;
Lee, Harrison K. H. ;
Heasman, Keith C. ;
Carnie, Matthew J. ;
Watson, Trystan M. ;
Tsoi, Wing C. .
SOLAR RRL, 2019, 3 (12)
[9]   Unravelling the Material Composition Effects on the Gamma Ray Stability of Lead Halide Perovskite Solar Cells: MAPbI3 Breaks the Records [J].
Boldyreva, Aleksandra G. ;
Frolova, Lyubov A. ;
Zhidkov, Ivan S. ;
Gutsev, Lavrenty G. ;
Kurmaev, Ernst Z. ;
Ramachandran, Bala R. ;
Petrov, Vladimir G. ;
Stevenson, Keith J. ;
Aldoshin, Sergey M. ;
Troshin, Pavel A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (07) :2630-2636
[10]   γ-Ray-Induced Degradation in the Triple-Cation Perovskite Solar Cells [J].
Boldyreva, Aleksandra G. ;
Akbulatov, Azat F. ;
Tsarev, Sergey A. ;
Luchkin, Sergey Yu. ;
Zhidkov, Ivan S. ;
Kurmaev, Erst Z. ;
Stevenson, Keith J. ;
Petrov, Vladimir G. ;
Troshin, Pavel A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (04) :813-818