Flank wear prediction using spatial binary properties and artificial neural network in face milling of Inconel 718
被引:4
作者:
Banda, Tiyamike
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, MalaysiaUniv Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, Malaysia
Banda, Tiyamike
[1
]
Jauw, Veronica Lestari
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, MalaysiaUniv Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, Malaysia
Jauw, Veronica Lestari
[1
]
Li, Chuan
论文数: 0引用数: 0
h-index: 0
机构:
Dongguan Univ Technol, Sch Mech Engn, Dongguan 523808, Peoples R ChinaUniv Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, Malaysia
Li, Chuan
[2
]
Farid, Ali Akhavan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, MalaysiaUniv Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, Malaysia
Farid, Ali Akhavan
[1
]
Lim, Chin Seong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, MalaysiaUniv Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, Malaysia
Lim, Chin Seong
[1
]
机构:
[1] Univ Nottingham Malaysia, Dept Mech Mat & Mfg Engn, Semenyih 43500, Malaysia
[2] Dongguan Univ Technol, Sch Mech Engn, Dongguan 523808, Peoples R China
Machining of Inconel 718 causes rapid tool failure, which affects the tooling cost and dimension tolerance of the components. Literature attributed flank wear as the dominant failure criterion that determines tool life during the milling operation. Flank wear width (VB) can be measured using digital microscopes or predicted in-process by a machine vision-based tool condition monitoring (MV-TCM) system. In MV-TCM, geometric and textural features are extracted from the flank wear region to represent VB progression. However, the leading cutting edge, where flank wear is measured, experiences progressive chipping and built-up edge when machining Inconel 718. These failure modes distract pixel distribution and luminosity, creating complex flank wear features on the leading cutting edge. Nevertheless, the wear region extracted from the side cutting edge shows a consistent change in features that can be used to predict flank wear progression under such failure modes. In addition, the scale-invariant fractal dimension can complement the geometric parameters, improving the reliability of features used to predict flank wear. This paper presents a multi-layer perceptron neural network (MLPNN) that was trained using a synergy of geometric and fractal features extracted from the side cutting edge of square inserts to predict flank wear progression during face milling of Inconel 718. The MLPNN shows an accuracy of 95.5% and a mean absolute percentage error of 1.099% during MV-TCM. The paper shows the potential of applying an in-process MV-TCM expedited by spatial binary features to estimate flank wear progression when milling Inconel 718.
机构:
Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
Wu, Jiaxin
;
Jin, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Energy, Chengdu 610059, Sichuan, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
Jin, Xin
;
Mi, Shuo
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
Mi, Shuo
;
Tang, Jinbo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Mt Hazards & Surface Proc, Chengdu 610041, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
机构:
Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
Wu, Jiaxin
;
Jin, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Chengdu Univ Technol, Coll Energy, Chengdu 610059, Sichuan, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
Jin, Xin
;
Mi, Shuo
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China
Mi, Shuo
;
Tang, Jinbo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Mt Hazards & Surface Proc, Chengdu 610041, Peoples R ChinaSichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Sichuan, Peoples R China