Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing

被引:128
作者
Kwon, Ki Chang [1 ,2 ]
Baek, Ji Hyun [1 ]
Hong, Kootak [1 ]
Kim, Soo Young [3 ]
Jang, Ho Won [1 ,4 ]
机构
[1] Seoul Natl Univ, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Korea Res Inst Stand & Sci KRISS, Interdisciplinary Mat Measurement Inst, Daejeon 34133, South Korea
[3] Korea Univ, Inst Green Mfg Technol, Dept Mat Sci & Engn, Seoul 02841, South Korea
[4] Seoul Natl Univ, Adv Inst Convergence Technol, Suwon 16229, South Korea
基金
新加坡国家研究基金会;
关键词
Two-dimensional materials; Memristors; Neuromorphic computing; Artificial synapses; Transition metal chalcogenides; PAIRED-PULSE FACILITATION; PHASE-TRANSITION; SYNAPTIC PLASTICITY; MOS2; NANOSHEETS; FERROELECTRICITY; SYNAPSES; 1T; MONOLAYER; INPLANE; NETWORK;
D O I
10.1007/s40820-021-00784-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional (2D) transition metal chalcogenides (TMC) and their heterostructures are appealing as building blocks in a wide range of electronic and optoelectronic devices, particularly futuristic memristive and synaptic devices for brain-inspired neuromorphic computing systems. The distinct properties such as high durability, electrical and optical tunability, clean surface, flexibility, and LEGO-staking capability enable simple fabrication with high integration density, energy-efficient operation, and high scalability. This review provides a thorough examination of high-performance memristors based on 2D TMCs for neuromorphic computing applications, including the promise of 2D TMC materials and heterostructures, as well as the state-of-the-art demonstration of memristive devices. The challenges and future prospects for the development of these emerging materials and devices are also discussed. The purpose of this review is to provide an outlook on the fabrication and characterization of neuromorphic memristors based on 2D TMCs.
引用
收藏
页数:30
相关论文
共 191 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[3]  
Ajayan P, 2016, PHYS TODAY, V69, P39
[4]   Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors [J].
Arnold, Andrew J. ;
Razavieh, Ali ;
Nasr, Joseph R. ;
Schulman, Daniel S. ;
Eichfeld, Chad M. ;
Das, Saptarshi .
ACS NANO, 2017, 11 (03) :3110-3118
[5]   Resistance switching in two-terminal ferroelectric-semiconductor lateral heterostructures [J].
Asadi, Kamal .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[6]   Dual-Gated MoS2 Neuristor for Neuromorphic Computing [J].
Bao, Lin ;
Zhu, Jiadi ;
Yu, Zhizhen ;
Jia, Rundong ;
Cai, Qifeng ;
Wang, Zongwei ;
Xu, Liying ;
Wu, Yanqing ;
Yang, Yuchao ;
Cai, Yimao ;
Huang, Ru .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) :41482-41489
[7]  
Bessonov AA, 2015, NAT MATER, V14, P199, DOI [10.1038/NMAT4135, 10.1038/nmat4135]
[8]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[9]   Neuromorphic Hardware Learns to Learn [J].
Bohnstingl, Thomas ;
Scherr, Franz ;
Pehle, Christian ;
Meier, Karlheinz ;
Maass, Wolfgang .
FRONTIERS IN NEUROSCIENCE, 2019, 13
[10]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9