mRNA vaccines for infectious diseases: principles, delivery and clinical translation

被引:903
作者
Chaudhary, Namit [1 ]
Weissman, Drew [2 ]
Whitehead, Kathryn A. [1 ,3 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Univ Penn, Dept Med, Philadelphia, PA 19104 USA
[3] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
RESPIRATORY SYNCYTIAL VIRUS; LIPID NANOPARTICLE FORMULATIONS; PROOF-OF-CONCEPT; ZIKA VIRUS; PROTECTIVE EFFICACY; IN-VIVO; SYSTEMIC DELIVERY; IMMUNE-RESPONSES; T-CELLS; INTRACELLULAR DELIVERY;
D O I
10.1038/s41573-021-00283-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The COVID-19 pandemic has established mRNA vaccines as a rapid, effective and safe approach for the protection of individuals from infectious disease. Here, Whitehead and colleagues review the principles of mRNA vaccine design, synthesis and delivery, assessing recent progress and key issues in the development of mRNA vaccines for a range of infectious diseases. Over the past several decades, messenger RNA (mRNA) vaccines have progressed from a scepticism-inducing idea to clinical reality. In 2020, the COVID-19 pandemic catalysed the most rapid vaccine development in history, with mRNA vaccines at the forefront of those efforts. Although it is now clear that mRNA vaccines can rapidly and safely protect patients from infectious disease, additional research is required to optimize mRNA design, intracellular delivery and applications beyond SARS-CoV-2 prophylaxis. In this Review, we describe the technologies that underlie mRNA vaccines, with an emphasis on lipid nanoparticles and other non-viral delivery vehicles. We also overview the pipeline of mRNA vaccines against various infectious disease pathogens and discuss key questions for the future application of this breakthrough vaccine platform.
引用
收藏
页码:817 / 838
页数:22
相关论文
共 261 条
[61]   Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery [J].
Fenton, Owen S. ;
Kauffman, Kevin J. ;
McClellan, Rebecca L. ;
Appel, Eric A. ;
Dorkin, J. Robert ;
Tibbitt, Mark W. ;
Heartlein, Michael W. ;
DeRosa, Frank ;
Langer, Robert ;
Anderson, Daniel G. .
ADVANCED MATERIALS, 2016, 28 (15) :2939-2943
[62]   A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice [J].
Freyn, Alec W. ;
da Silva, Jamile Ramos ;
Rosado, Victoria C. ;
Bliss, Carly M. ;
Pine, Matthew ;
Mui, Barbara L. ;
Tam, Ying K. ;
Madden, Thomas D. ;
de Souza Ferreira, Luis Carlos ;
Weissman, Drew ;
Krammer, Florian ;
Coughlan, Lynda ;
Palese, Peter ;
Pardi, Norbert ;
Nachbagauer, Raffael .
MOLECULAR THERAPY, 2020, 28 (07) :1569-1584
[63]   Neutralization of the Plasmodium-encoded MIF ortholog confers protective immunity against malaria infection [J].
Garcia, Alvaro Baeza ;
Siu, Edwin ;
Sun, Tiffany ;
Exler, Valerie ;
Brito, Luis ;
Hekele, Armin ;
Otten, Gib ;
Augustijn, Kevin ;
Janse, Chris J. ;
Ulmer, Jeffrey B. ;
Bernhagen, Juergen ;
Fikrig, Erol ;
Geall, Andrew ;
Bucala, Richard .
NATURE COMMUNICATIONS, 2018, 9
[64]   Nonviral delivery of self-amplifying RNA vaccines [J].
Geall, Andrew J. ;
Verma, Ayush ;
Otten, Gillis R. ;
Shaw, Christine A. ;
Hekele, Armin ;
Banerjee, Kaustuv ;
Cu, Yen ;
Beard, Clayton W. ;
Brito, Luis A. ;
Krucker, Thomas ;
O'Hagan, Derek T. ;
Singh, Manmohan ;
Mason, Peter W. ;
Valiante, Nicholas M. ;
Dormitzer, Philip R. ;
Barnett, Susan W. ;
Rappuoli, Rino ;
Ulmer, Jeffrey B. ;
Mandl, Christian W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (36) :14604-14609
[65]   Improving cancer immunotherapy through nanotechnology [J].
Goldberg, Michael S. .
NATURE REVIEWS CANCER, 2019, 19 (10) :587-602
[66]   Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives [J].
Gomez-Aguado, Itziar ;
Rodriguez-Castejon, Julen ;
Vicente-Pascual, Monica ;
Rodriguez-Gascon, Alicia ;
Angeles Solinis, Maria ;
del Pozo-Rodriguez, Ana .
NANOMATERIALS, 2020, 10 (02)
[67]   Mannosylation of LNP Results in Improved Potency for Self-Amplifying RNA (SAM) Vaccines [J].
Goswami, Roshan ;
Chatzikleanthous, Despo ;
Lou, Gustavo ;
Giusti, Fabiola ;
Bonci, Alessandra ;
Taccone, Marianna ;
Brazzoli, Michela ;
Gallorini, Simona ;
Ferlenghi, Ilaria ;
Berti, Francesco ;
O'Hagan, Derek T. ;
Pergola, Carlo ;
Baudner, Barbara C. ;
Adamo, Roberto .
ACS INFECTIOUS DISEASES, 2019, 5 (09) :1546-1558
[68]   mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice [J].
Haabeth, Ole A. W. ;
Blake, Timothy R. ;
McKinlay, Colin J. ;
Waymouth, Robert M. ;
Wender, Paul A. ;
Levy, Ronald .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (39) :E9153-E9161
[69]   A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing In Vivo [J].
Hajj, Khalid A. ;
Melamed, Jilian R. ;
Chaudhary, Namit ;
Lamson, Nicholas G. ;
Ball, Rebecca L. ;
Yerneni, Saigopalakrishna S. ;
Whitehead, Kathryn A. .
NANO LETTERS, 2020, 20 (07) :5167-5175
[70]   Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH [J].
Hajj, Khalid A. ;
Ball, Rebecca L. ;
Deluty, Sarah B. ;
Singh, Shridhar R. ;
Strelkova, Daria ;
Knapp, Christopher M. ;
Whitehead, Kathryn A. .
SMALL, 2019, 15 (06)