Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery

被引:129
作者
Yao, Meng [1 ,2 ,3 ]
Ruan, Qinqin [1 ,2 ,3 ]
Yu, Tianhao [1 ,3 ]
Zhang, Haitao [1 ,2 ,3 ,4 ]
Zhang, Suojiang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Beijing Key Lab Ion Liquids Clean Proc, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Proc Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[4] Zhengzhou Inst Emerging Ind Technol, Henan Key Lab Energy Storage Mat & Proc, Zhengzhou 450003, Peoples R China
基金
国家自然科学基金重大项目; 中国国家自然科学基金;
关键词
Solid polymer electrolytes; Li+ conducting network; Lithium metal batteries; Dendrite-free; WIDE TEMPERATURE-RANGE; COMPOSITE ELECTROLYTES; IONIC LIQUID; IONOGEL ELECTROLYTE; HIGH-PERFORMANCE; ANODE; ANION; SALT; MECHANISMS; BEHAVIOR;
D O I
10.1016/j.ensm.2021.10.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) with profound compatibility for high-voltage cathodes and reliable operation over a board temperature range are in urgent demand for the practical application of solid lithium metal batteries (SLMBs). In this study, a SPE containing interconnected fast Li+ conducting network was constructed via an in-situ hydrolysis of tetraethoxysilane (TEOS) within polyacrylonitrile (PAN) matrix to intensify the thermal stability of SLMBs. The in-situ formed interconnected inorganic network not only acts as a robust backbone for the whole SPE, but also furnishes sufficient continuous surfaces with Lewis-acidic sites, which will promote the dissociation of Li salt. As a consequence, the fabricated SPE exhibits an promising ionic conductivity of similar to 0.35 mS cm(-1), an attractive Young' modulus of 8.627 Gpa and a satisfactory lithium-ion transference number of 0.52. Solidstate nuclear magnetic resonance (S-NMR) and X-ray photoelectron spectroscopy (XPS) techniques were used to unravel the interactions among Li+ ions, PAN and as-formed SiO2. Based on the in-situ formed SPE, a Li/LiFePO4 SLMB presents an excellent cycle stability from 20 to 80 degrees C and a Li/LiNi0.6Mn0.2Co0.2O2 SLMB shows a steady discharge capacity of 173.1 mAh g(-1) with 93.8 % retention after 200 cycles at 4.3 V. Additionally, the Li/LiFePO4 pouch cell also delivers a stable cyclability and superior safety for practical applications. The design strategy of our work provides a rigid - flexible coupling dynamic strategy to fabricate SPEs for wide-temperature applicability and high energy density SLMBs.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 81 条
[51]   Recent advances in all-solid-state rechargeable lithium batteries [J].
Sun, Chunwen ;
Liu, Jin ;
Gong, Yudong ;
Wilkinson, David P. ;
Zhang, Jiujun .
NANO ENERGY, 2017, 33 :363-386
[52]   g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability [J].
Sun, Zongjie ;
Li, Yuhan ;
Zhang, Shuyang ;
Shi, Lei ;
Wu, Hu ;
Bu, Huaitian ;
Ding, Shujiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) :11069-11076
[53]   Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)3 for long-life all-solid-state Li-ion batteries [J].
Sung, Bong-Joon ;
Didwal, Pravin N. ;
Verma, Rakesh ;
Nguyen, An-Giang ;
Chang, Duck Rye ;
Park, Chan-Jin .
ELECTROCHIMICA ACTA, 2021, 392
[54]   Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries [J].
Suriyakumar, Shruti ;
Gopi, Sivalingam ;
Kathiresan, Murugavel ;
Bose, Suriyasarathi ;
Gowd, E. Bhoje ;
Nair, Jijeesh R. ;
Angulakshmi, Natarajan ;
Meligrana, Giuseppina ;
Bella, Federico ;
Gerbaldi, Claudio ;
Stephan, A. Manuel .
ELECTROCHIMICA ACTA, 2018, 285 :355-364
[55]   Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries [J].
Tan, Shuang-Jie ;
Zeng, Xian-Xiang ;
Ma, Qiang ;
Wu, Xiong-Wei ;
Guo, Yu-Guo .
ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (02) :113-138
[56]   Low Resistance-Integrated All-Solid-State Battery Achieved by Li7La3Zr2O12 Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder [J].
Wan, Zipei ;
Lei, Danni ;
Yang, Wei ;
Liu, Cheng ;
Shi, Kai ;
Hao, Xiaoge ;
Shen, Lu ;
Lv, Wei ;
Li, Baohua ;
Yang, Quan-Hong ;
Kang, Feiyu ;
He, Yan-Bing .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (01)
[57]   HIGH IONIC-CONDUCTIVITY OF NEW POLYMER ELECTROLYTES CONSISTING OF POLYPYRIDINIUM, PYRIDINIUM AND ALUMINUM-CHLORIDE [J].
WATANABE, M ;
YAMADA, S ;
SANUI, K ;
OGATA, N .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1993, (11) :929-931
[58]   Performance of "Polymer-in-Salt" Electrolyte PAN-LiTFSI Enhanced by Graphene Oxide Filler [J].
Wu, Bo ;
Wang, Liping ;
Li, Zhiling ;
Zhao, Mingjuan ;
Chen, Kaihao ;
Liu, Sihong ;
Pu, Yunqiang ;
Li, Jingze .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (10) :A2248-A2252
[59]   Organically modified silica-supported ionogels electrolyte for high temperature lithium-ion batteries [J].
Wu, Feng ;
Chen, Nan ;
Chen, Renjie ;
Wang, Lili ;
Li, Li .
NANO ENERGY, 2017, 31 :9-18
[60]   Self-Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery [J].
Wu, Feng ;
Chen, Nan ;
Chen, Renjie ;
Zhu, Qizhen ;
Tan, Guoqiang ;
Li, Li .
ADVANCED SCIENCE, 2016, 3 (01)