QSAR without borders

被引:555
作者
Muratov, Eugene N. [1 ,2 ]
Bajorath, Jurgen [3 ]
Sheridan, Robert P. [4 ]
Tetko, Igor, V [5 ,6 ]
Filimonov, Dmitry [7 ]
Poroikov, Vladimir [7 ]
Oprea, Tudor, I [8 ,9 ,10 ,11 ]
Baskin, Igor I. [12 ,13 ]
Varnek, Alexandre [12 ]
Roitberg, Adrian [14 ]
Isayev, Olexandr [1 ]
Curtarolo, Stefano [15 ]
Fourches, Denis [16 ]
Cohen, Yoram [17 ]
Aspuru-Guzik, Alan [18 ]
Winkler, David A. [19 ,20 ,21 ,22 ]
Agrafiotis, Dimitris [23 ]
Cherkasov, Artem [24 ]
Tropsha, Alexander [1 ]
机构
[1] Univ N Carolina, UNC Eshelman Sch Pharm, Chapel Hill, NC 27515 USA
[2] Univ Fed Paraiba, Dept Pharmaceut Sci, Joao Pessoa, PB, Brazil
[3] Univ Bonn, Dept Life Sci Informat, Bonn, Germany
[4] Merck & Co Inc, Kenilworth, NJ USA
[5] Helmholtz Zentrum Munchen Deutsch Forschungszentr, Inst Struct Biol, Neuherberg, Germany
[6] BIGCHEM GmbH, Neuherberg, Germany
[7] Inst Biomed Chem, Moscow, Russia
[8] Univ New Mexico, Dept Internal Med, Albuquerque, NM 87131 USA
[9] Univ New Mexico, UNM Comprehens Canc Ctr, Albuquerque, NM 87131 USA
[10] Gothenburg Univ, Dept Rheumatol, Gothenburg, Sweden
[11] Univ Copenhagen, Novo Nordisk Fdn Ctr Prot Res, Copenhagen, Denmark
[12] Univ Strasbourg, Dept Chem, Strasbourg, France
[13] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia
[14] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[15] Duke Univ, Ctr Autonomous Mat Design, Mat Sci, Durham, NC USA
[16] North Carolina State Univ, Dept Chem, Raleigh, NC USA
[17] Univ Calif Los Angeles, Inst Environm & Sustainabil, Los Angeles, CA USA
[18] Univ Toronto, Dept Chem, Toronto, ON, Canada
[19] Monash Univ, Monash Inst Pharmaceut Sci, Melbourne, Vic, Australia
[20] La Trobe Univ, La Trobe Inst Mol Sci, Bundooru, Australia
[21] CSIRO Mfg, Clayton, Vic, Australia
[22] Univ Nottingham, Sch Pharm, Nottingham, England
[23] NIBR, Cambridge, MA USA
[24] Univ British Columbia, Vancouver Prostate Ctr, Vancouver, BC, Canada
基金
欧盟地平线“2020”;
关键词
QUANTITATIVE STRUCTURE-ACTIVITY; ADVERSE OUTCOME PATHWAYS; ACTIVITY-RELATIONSHIP MODELS; MATCHED MOLECULAR PAIRS; DATA MINING TECHNIQUES; DEEP NEURAL-NETWORKS; BIOLOGICAL-ACTIVITY; INDUSTRIAL-CHEMICALS; ACTIVITY PREDICTION; ORGANIC-REACTIONS;
D O I
10.1039/d0cs00098a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure-activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.
引用
收藏
页码:3525 / 3564
页数:40
相关论文
共 352 条
[1]   Using Online Tool (iPrior) for Modeling ToxCast™ Assays Towards Prioritization of Animal Toxicity Testing [J].
Abdelaziz, Ahmed ;
Sushko, Yurii ;
Novotarskyi, Sergii ;
Koerner, Robert ;
Brandmaier, Stefan ;
Tetko, Igor V. .
COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2015, 18 (04) :420-438
[2]   Can literature analysis identify innovation drivers in drug discovery? [J].
Agarwal, Pankaj ;
Searls, David B. .
NATURE REVIEWS DRUG DISCOVERY, 2009, 8 (11) :865-878
[3]   Combinatorial informatics in the post-genomics era [J].
Agrafiotis, DK ;
Lobanov, VS ;
Salemme, FR .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (05) :337-346
[4]   On the use of neural network ensembles in QSAR and QSPR [J].
Agrafiotis, DK ;
Cedeño, W ;
Lobanov, VS .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (04) :903-911
[5]   A new approach for modeling of flow number of asphalt mixtures [J].
Alavi, Amir H. ;
Hasni, Hassene ;
Zaabar, Imen ;
Lajnef, Nizar .
ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2017, 17 (02) :326-335
[6]   New Ground-Motion Prediction Equations Using Multi Expression Programing [J].
Alavi, Amir Hossein ;
Gandomi, Amir Hossein ;
Modaresnezhad, Minoo ;
Mousavi, Mehdi .
JOURNAL OF EARTHQUAKE ENGINEERING, 2011, 15 (04) :511-536
[7]   Cheminformatics-driven discovery of polymeric micelle formulations for poorly soluble drugs [J].
Alves, Vinicius M. ;
Hwang, Duhyeong ;
Muratov, Eugene ;
Sokolsky-Papkov, Marina ;
Varlamova, Ekaterina ;
Vinod, Natasha ;
Lim, Chaemin ;
Andrade, Carolina H. ;
Tropsha, Alexander ;
Kabanov, Alexander .
SCIENCE ADVANCES, 2019, 5 (06)
[8]   Chemical toxicity prediction for major classes of industrial chemicals: Is it possible to develop universal models covering cosmetics, drugs, and pesticides? [J].
Alves, Vinicius M. ;
Muratov, Eugene N. ;
Zakharov, Alexey ;
Muratov, Nail N. ;
Andrade, Carolina H. ;
Tropsha, Alexander .
FOOD AND CHEMICAL TOXICOLOGY, 2018, 112 :526-534
[9]  
Alves VM, 2016, GREEN CHEM, V18, P4348, DOI [10.1039/C6GC01492E, 10.1039/c6gc01492e]
[10]   ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT [J].
Ankley, Gerald T. ;
Bennett, Richard S. ;
Erickson, Russell J. ;
Hoff, Dale J. ;
Hornung, Michael W. ;
Johnson, Rodney D. ;
Mount, David R. ;
Nichols, John W. ;
Russom, Christine L. ;
Schmieder, Patricia K. ;
Serrrano, Jose A. ;
Tietge, Joseph E. ;
Villeneuve, Daniel L. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (03) :730-741