Chemically-informed data-driven optimization (ChIDDO): leveraging physical models and Bayesian learning to accelerate chemical research

被引:13
作者
Frey, Daniel [1 ]
Shin, Ju Hee [1 ]
Musco, Christopher [2 ]
Modestino, Miguel A. [1 ]
机构
[1] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, 6 Metrotech Ctr, Brooklyn, NY 11201 USA
[2] NYU, Tandon Sch Engn, Comp Sci & Engn, 370 Jay St, Brooklyn, NY USA
基金
美国国家科学基金会;
关键词
DESIGN; DISCOVERY;
D O I
10.1039/d2re00005a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current methods of finding optimal experimental conditions, Edisonian systematic searches, often inefficiently evaluate suboptimal design points and require fine resolution to identify near optimal conditions. For expensive experimental campaigns or those with large design spaces, the shortcomings of the status quo approaches are more significant. Here, we extend Bayesian optimization (BO) and introduce a chemically-informed data-driven optimization (ChIDDO) approach. This approach uses inexpensive and low-fidelity information obtained from physical models of chemical processes and subsequently combines it with expensive and high-fidelity experimental data to optimize a common objective function. Using common optimization benchmark objective functions, we describe scenarios in which the ChIDDO algorithm outperforms the traditional BO approach, and then implement the algorithm on a simulated electrochemical engineering optimization problem.
引用
收藏
页码:855 / 865
页数:11
相关论文
共 48 条
[1]  
Abdelrahman H, 2016, 2016 EUROPEAN CONTROL CONFERENCE (ECC), P2078, DOI 10.1109/ECC.2016.7810598
[2]   ELECTROLYTIC REDUCTIVE COUPLING .1. ACRYLONITRILE [J].
BAIZER, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1964, 111 (02) :215-222
[3]   Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning [J].
Balachandran, Prasanna V. ;
Kowalski, Benjamin ;
Sehirlioglu, Alp ;
Lookman, Turab .
NATURE COMMUNICATIONS, 2018, 9
[4]   Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence [J].
Blanco, Daniela E. ;
Lee, Bryan ;
Modestino, Miguel A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (36) :17683-17689
[5]   Electrochemical Manufacturing in the Chemical Industry [J].
Botte, Gerardine G. .
ELECTROCHEMICAL SOCIETY INTERFACE, 2014, 23 (03) :49-55
[6]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+
[7]   Ranked batch-mode active learning [J].
Cardoso, Thiago N. C. ;
Silva, Rodrigo M. ;
Canuto, Sergio ;
Moro, Mirella M. ;
Goncalves, Marcos A. .
INFORMATION SCIENCES, 2017, 379 :313-337
[8]   Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine Learning [J].
Dave, Adarsh ;
Mitchell, Jared ;
Kandasamy, Kirthevasan ;
Wang, Han ;
Burke, Sven ;
Paria, Biswajit ;
Poczos, Barnabas ;
Whitacre, Jay ;
Viswanathan, Venkatasubramanian .
CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (12)
[9]   Quantum Chemistry-Informed Active Learning to Accelerate the Design and Discovery of Sustainable Energy Storage Materials [J].
Doan, Hieu A. ;
Agarwal, Garvit ;
Qian, Hai ;
Counihan, Michael J. ;
Rodriguez-Lopez, Joaquin ;
Moore, Jeffrey S. ;
Assary, Rajeev S. .
CHEMISTRY OF MATERIALS, 2020, 32 (15) :6338-6346
[10]   Optimization of a cavern-based compressed air energy storage facility with an efficient adaptive genetic algorithm [J].
Ebrahimi, Mehdi ;
Ting, David S-K. ;
Carriveau, Rupp ;
McGillis, Andrew ;
Young, Davin .
ENERGY STORAGE, 2020, 2 (06)