Efficient prediction designs for random fields

被引:5
作者
Mueller, Werner G. [1 ]
Pronzato, Luc [2 ]
Rendas, Joao [2 ]
Waldl, Helmut [1 ]
机构
[1] Johannes Kepler Univ Linz, Dept Appl Stat, A-4040 Linz, Austria
[2] Univ Nice Sophia Antipolis, CNRS, Lab I3S, F-06189 Nice, France
关键词
optimal design; Pareto front; empirical kriging; Gaussian process models; PARAMETER-ESTIMATION; COVARIANCE; MODELS;
D O I
10.1002/asmb.2084
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For estimation and predictions of random fields, it is increasingly acknowledged that the kriging variance may be a poor representative of true uncertainty. Experimental designs based on more elaborate criteria that are appropriate for empirical kriging (EK) are then often non-space-filling and very costly to determine. In this paper, we investigate the possibility of using a compound criterion inspired by an equivalence theorem type relation to build designs quasi-optimal for the EK variance when space-filling designs become unsuitable. Two algorithms are proposed, one relying on stochastic optimization to explicitly identify the Pareto front, whereas the second uses the surrogate criteria as local heuristic to choose the points at which the (costly) true EK variance is effectively computed. We illustrate the performance of the algorithms presented on both a simple simulated example and a real oceanographic dataset. (c) 2014 The Authors. Applied Stochastic Models in Business and Industry published by John Wiley & Sons, Ltd.
引用
收藏
页码:178 / 194
页数:17
相关论文
共 50 条
  • [41] Isotropic Random Fields with the Von Karman-Whittle Type Correlation Structure
    Shu, Hong
    Ma, Xinsheng
    Ma, Chunsheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (19) : 3504 - 3512
  • [42] Fast and exact simulation of Gaussian random fields defined on the sphere cross time
    Cuevas, Francisco
    Allard, Denis
    Porcu, Emilio
    STATISTICS AND COMPUTING, 2020, 30 (01) : 187 - 194
  • [43] Fully Bayesian Prediction Algorithms for Mobile Robotic Sensors under Uncertain Localization Using Gaussian Markov Random Fields
    Jadaliha, Mahdi
    Jeong, Jinho
    Xu, Yunfei
    Choi, Jongeun
    Kim, Junghoon
    SENSORS, 2018, 18 (09)
  • [44] Optimal Designs for Random Coefficient Regression Models with Heteroscedastic Errors
    Cheng, Jing
    Yue, Rong-Xian
    Liu, Xin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (15) : 2798 - 2809
  • [45] Optimal designs in multiple group random coefficient regression models
    Prus, Maryna
    TEST, 2020, 29 (01) : 233 - 254
  • [46] Fractional elliptic, hyperbolic and parabolic random fields
    Leonenko, N. N.
    Ruiz-Medina, M. D.
    Taqqu, M. S.
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 1134 - 1172
  • [47] Approximate reference priors for Gaussian random fields
    De Oliveira, Victor
    Han, Zifei
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (01) : 296 - 326
  • [48] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [49] Optimal designs in multiple group random coefficient regression models
    Maryna Prus
    TEST, 2020, 29 : 233 - 254
  • [50] Convolutional neural random fields for action recognition
    Liu, Caihua
    Liu, Jie
    He, Zhicheng
    Zhai, Yujia
    Hu, Qinghua
    Huang, Yalou
    PATTERN RECOGNITION, 2016, 59 : 213 - 224