Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders

被引:11
作者
Edun, Ayobami S. [1 ]
LaFlamme, Cody [1 ]
Kingston, Samuel R. [2 ]
Furse, Cynthia M. [2 ,3 ]
Scarpulla, Michael A. [2 ]
Harley, Joel B. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
[3] LiveWire Test Labs Inc, Salt Lake City, UT 84117 USA
关键词
Circuit faults; Sensors; Correlation; Arrays; Power cables; Dictionaries; Photovoltaic systems; Variational autoencoders; reflectometry; SSTDR; disconnects; faults; FAULT-DIAGNOSIS; LOCALIZATION;
D O I
10.1109/JSEN.2022.3140922
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article utilizes variational autoencoder (VAE) and spread spectrum time domain reflectometry (SSTDR) to detect, isolate, and characterize anomalous data (or faults) in a photovoltaic (PV) array. The goal is to learn the distribution of non-faulty input signals, inspect the reconstruction error of test signals, flag anomalies, and then locate or characterize the anomalous data using a predicted baseline rather than a fixed baseline that might be too rigid. The use of VAE handles imbalanced data better than other methods used for classification of PV faults because of its unsupervised nature. We consider only disconnects in this work, and our results show an overall accuracy of 96% for detecting true negatives (non-faulty data), a 99% true positive rate of detecting anomalies, 0.997 area under the ROC curve, 0.99 area under the precision-recall curve, and a maximum percentage absolute relative error of 0.40% in locating the faults on a 5-panel setup with a 59.13 m leader cable.
引用
收藏
页码:3484 / 3492
页数:9
相关论文
共 27 条
  • [1] Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach
    Dairi, Abdelkader
    Harrou, Fouzi
    Sun, Ying
    Khadraoui, Sofiane
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 20
  • [2] Detection and Localization of Disconnections in a Large-Scale String of Photovoltaics Using SSTDR
    Edun, Ayobami S.
    Kingston, Samuel
    LaFlamme, Cody
    Benoit, Evan
    Scarpulla, Michael A.
    Furse, Cynthia M.
    Harley, Joel B.
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2021, 11 (04): : 1097 - 1104
  • [3] Finding Faults in PV Systems: Supervised and Unsupervised Dictionary Learning With SSTDR
    Edun, Ayobami S.
    LaFlamme, Cody
    Kingston, Samuel R.
    Tetali, Harsha Vardhan
    Benoit, Evan J.
    Scarpulla, Michael
    Furse, Cynthia M.
    Harley, Joel B.
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (04) : 4855 - 4865
  • [4] Spread Spectrum Time Domain Reflectometry With Lumped Elements on Asymmetric Transmission Lines
    Edun, Ayobami S.
    Tumkur Jayakumar, Naveen Kumar
    Kingston, Samuel R.
    Furse, Cynthia M.
    Scarpulla, Michael A.
    Harley, Joel B.
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (02) : 921 - 929
  • [5] The invisible fray: A critical analysis of the use of reflectometry for fray location
    Griffiths, LA
    Parakh, R
    Furse, C
    Baker, B
    [J]. IEEE SENSORS JOURNAL, 2006, 6 (03) : 697 - 706
  • [6] Hanif A, 2018, 2018 IEEE 6TH WORKSHOP ON WIDE BANDGAP POWER DEVICES AND APPLICATIONS (WIPDA), P18, DOI 10.1109/WiPDA.2018.8569099
  • [7] Online Two-Section PV Array Fault Diagnosis With Optimized Voltage Sensor Locations
    Hu, Yihua
    Zhang, Jiangfeng
    Cao, Wenping
    Wu, Jiande
    Tian, Gui Yun
    Finney, Stephen J.
    Kirtley, James L., Jr.
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (11) : 7237 - 7246
  • [8] Inoue T, 2018, IEEE IMAGE PROC, P2725, DOI 10.1109/ICIP.2018.8451064
  • [9] Kafal M, 2018, IEEE AUTOTESTCON, P147
  • [10] Kingma D P., 2014, P INT C LEARN REPR