Extracellular vesicles derived from T-cell acute lymphoblastic leukemia inhibit osteogenic differentiation of bone marrow mesenchymal stem cells via miR-34a-5p

被引:7
|
作者
Yuan, Tian [1 ]
Shi, Ce [2 ]
Xu, Wen [1 ]
Yang, Hong-Liang [1 ]
Xia, Bing [1 ]
Tian, Chen [1 ]
机构
[1] Tianjin Med Univ, Key Lab Canc Immunol & Biotherapy, Natl Clin Res Ctr Canc,Tianjins Clin Res Ctr Canc, Key Lab Canc Prevent & Therapy,Canc Inst & Hosp, 3 Huanhuxi Rd, Tianjin 300060, Peoples R China
[2] Harbin Med Univ, Affiliated Hosp 1, Cent Lab Hematol & Oncol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
T-cell acute lymphoblastic leukemia; Bone marrow stromal cells; Extracellular vesicles; MicroRNA-34a-5p; Osteogenic differentiation; PROLIFERATION; MICRORNAS; MECHANISM; MICROENVIRONMENT; ADIPOGENESIS; TARGET;
D O I
10.1507/endocrj.EJ21-0005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Reduced bone formation in patients with T-cell acute lymphoblastic leukemia (T-ALL) may be related to the interaction between tumour cells and bone marrow stromal cells (BMSCs). The miRNAs in extracellular vesicles derived from leukemia cells play an essential role in regulating the function of BMSCs; however, the regulatory mechanisms remain unclear. The expression of miR-34a-5p in T-ALL patients and cells was measured by quantitative real-time PCR. BMSCs were co-cultured with extracellular vesicles isolated from T-ALL cells in mineralization medium. The osteogenic differentiation of BMSCs was evaluated by Alizarin Red S staining, alkaline phosphatase (ALP) staining, and detection of osteogenic differentiation markers. A dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-34a-5p and Wnt family member 1 (WNT1). MiR-34a-5p expression was upregulated in T-ALL patients and Jurkat cells. After BMSCs were co-cultured with extracellular vesicles derived from T-ALL cells, osteogenic differentiation of BMSCs was inhibited, and bone mineralization and ALP activity were decreased compared to those of control cells. MiR-34a-5p knockdown in T-ALL cells restored osteogenic differentiation of BMSCs co-cultured with extracellular vesicles. In addition, miR-34a-5p targets and negatively regulates WNT1 expression. In conclusion, our results demonstrated that knockdown of miR-34a-5p in extracellular vesicles derived from T-ALL cells promoted osteogenic differentiation of BMSCs by regulating WNT1.
引用
收藏
页码:1197 / 1208
页数:12
相关论文
共 50 条
  • [11] Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote liver regeneration via miR-20a-5p/PTEN
    Zhang, Jing
    Gao, Juan
    Li, Xianlong
    Lin, Dengna
    Li, Zhihui
    Wang, Jialei
    Chen, Junfeng
    Gao, Zhiliang
    Lin, Bingliang
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [12] Mir-142-5p inhibits the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting Lhx8
    Du, Yongjun
    Zhong, Hui
    Yu, Chen
    Lv, Yan
    Yao, Yueyi
    Peng, Zhi
    Lu, Sheng
    HELIYON, 2023, 9 (09)
  • [13] Effect of miR-34a on the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (BMSCs) in Hyperlipidemia Rats
    Liu, Jun
    Tang, Meiling
    Tana, Shuai
    Zhang, Heng
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2022, 12 (06) : 1260 - 1265
  • [14] miR-124 regulates the osteogenic differentiation of bone marrow-derived mesenchymal stem cells by targeting Sp7
    Tang, Jia-Zhen
    Lin, Xiao
    Zhong, Jia-Yu
    Xu, Feng
    Wu, Feng
    Liao, Xiao-Bo
    Cui, Rong-Rong
    Li, Fuxingzi
    Yuan, Ling-Qing
    MOLECULAR MEDICINE REPORTS, 2019, 19 (05) : 3807 - 3814
  • [15] CD4+T cells from patients with acute myeloid leukemia inhibit the proliferation of bone marrow-derived mesenchymal stem cells by secretion of miR-10a
    Yu, Zhen
    Li, Dong
    Ju, Xiu-li
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2016, 142 (04) : 733 - 740
  • [16] Bone Marrow Mesenchymal Stem Cells Release miR-378a-5p-Carried Extracellular Vesicles to Alleviate Rheumatoid Arthritis
    Zhang, Yaqin
    Jiao, Ziying
    Wang, Shanshan
    JOURNAL OF INNATE IMMUNITY, 2023, 15 (01) : 893 - 910
  • [17] MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation
    De Luca, Luciana
    Trino, Stefania
    Laurenzana, Ilaria
    Simeon, Vittorio
    Calice, Giovanni
    Raimondo, Stefania
    Podesta, Marina
    Santodirocco, Michele
    Di Mauro, Lazzaro
    La Rocca, Francesco
    Caivano, Antonella
    Morano, Annalisa
    Frassoni, Francesco
    Cilloni, Daniela
    Del Vecchio, Luigi
    Musto, Pellegrino
    ONCOTARGET, 2016, 7 (06) : 6676 - 6692
  • [18] Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation
    Man, Kenny
    Brunet, Mathieu Y.
    Fernandez-Rhodes, Maria
    Williams, Soraya
    Heaney, Liam M.
    Gethings, Lee A.
    Federici, Angelica
    Davies, Owen G.
    Hoey, David
    Cox, Sophie C.
    JOURNAL OF EXTRACELLULAR VESICLES, 2021, 10 (09)
  • [19] Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p
    Xu, Chen
    Wang, Zhaodong
    Liu, Yajun
    Wei, Bangguo
    Liu, Xiangyu
    Duan, Keyou
    Zhou, Pinghui
    Xie, Zhao
    Wu, Min
    Guan, Jianzhong
    CELL BIOLOGY AND TOXICOLOGY, 2023, 39 (04) : 1257 - 1274
  • [20] Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p
    Chen Xu
    Zhaodong Wang
    Yajun Liu
    Bangguo Wei
    Xiangyu Liu
    Keyou Duan
    Pinghui Zhou
    Zhao Xie
    Min Wu
    Jianzhong Guan
    Cell Biology and Toxicology, 2023, 39 : 1257 - 1274