SUPT4H1-edited stem cell therapy rescues neuronal dysfunction in a mouse model for Huntington's disease (vol 7, 8, 2022)

被引:1
|
作者
Park, Hyun Jung
Han, Areum
Kim, Ji Yeon
Choi, Jiwoo
Bae, Hee Sook
Cho, Gyu-bon
Shin, Hyejung
Shin, Eun Ji
Lee, Kang-in
Kim, Seokjoong
Lee, Jae Young
Song, Jihwan
机构
[1] Department of Biomedical Science, CHA Stem Cell Institute, CHA University, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do, Seongnam-si
[2] Toolgen Inc., 219 Gasan Digital 1-ro, Geumcheon-gu, Seoul
[3] iPS Bio, Inc., 3F, 16 Daewangpangyo-ro 712 Beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si
基金
新加坡国家研究基金会;
关键词
49;
D O I
10.1038/s41536-022-00219-6
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Huntington’s disease (HD) is a severe inherited neurological disorder caused by a CAG repeat expansion in the huntingtin gene (HTT), leading to the accumulation of mutant huntingtin with polyglutamine repeats. Despite its severity, there is no cure for this debilitating disease. HTT lowering strategies, including antisense oligonucleotides (ASO) showed promising results very recently. Attempts to develop stem cell-based therapeutics have shown efficacy in preclinical HD models. Using an HD patient’s autologous cells, which have genetic defects, may hamper therapeutic efficacy due to mutant HTT. Pretreating these cells to reduce mutant HTT expression and transcription may improve the transplanted cells’ therapeutic efficacy. To investigate this, we targeted the SUPT4H1 gene that selectively supports the transcription of long trinucleotide repeats. Transplanting SUPT4H1-edited HD-induced pluripotent stem cell-derived neural precursor cells (iPSC-NPCs) into the YAC128 HD transgenic mouse model improved motor function compared to unedited HD iPSC-NPCs. Immunohistochemical analysis revealed reduced mutant HTT expression without compensating wild-type HTT expression. Further, SUPT4H1 editing increased neuronal and decreased reactive astrocyte differentiation in HD iPSC-NPCs compared to the unedited HD iPSC-NPCs. This suggests that ex vivo editing of SUPT4H1 can reduce mutant HTT expression and provide a therapeutic gene editing strategy for autologous stem cell transplantation in HD. © 2022, The Author(s).
引用
收藏
页数:1
相关论文
empty
未找到相关数据