A laser wakefield acceleration facility using SG-II petawatt laser system

被引:2
作者
Liang, Xiao [1 ]
Yi, Youjian [1 ,2 ]
Li, Song [3 ,4 ]
Zhu, Ping [1 ]
Xie, Xinglong [1 ,2 ]
Liu, Huiya [1 ]
Mu, GuangJin [1 ]
Liu, ZhiGang [1 ]
Guo, Ailin [1 ]
Kang, Jun [1 ]
Yang, Qingwei [1 ]
Zhu, Haidong [1 ]
Gao, Qi [1 ]
Sun, Meizhi [1 ]
Lu, Haiyang [5 ]
Ma, Yanyun [6 ]
Mondal, Sudipta [3 ]
Papp, Daniel [3 ]
Majorosi, Szilard [3 ]
Lecz, Zsolt [3 ]
Andreev, Alexander [3 ,7 ]
Kahaly, Subhendu [3 ]
Kamperidis, Christos [3 ]
Hafz, Nasr A. M. [3 ]
Zhu, Jianqiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Natl Lab High Power Laser & Phys, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, 19 A Yuquan Rd, Beijing 100049, Peoples R China
[3] ELI HU Nonprofit Ltd, ELI ALPS, Wolfgang Sandner Utca 3, H-6728 Szeged, Hungary
[4] Deutsch Elekt Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[5] Shenzhen Technol Univ, Coll Engn Phys, Ctr Adv Mat Diagnost Technol, Shenzhen 518118, Peoples R China
[6] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Peoples R China
[7] Max Born Inst, Berlin, Germany
基金
中国国家自然科学基金;
关键词
ELECTRON-BEAMS; DRIVEN; RADIATION; PLASMAS; PHYSICS;
D O I
10.1063/5.0071761
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Laser wakefield acceleration (LWFA) using PW-class laser pulses generally requires cm-scale laser-plasma interaction Rayleigh length, which can be realized by focusing such pulses inside a long underdense plasma with a large f-number focusing optic. Here, we present a new PW-based LWFA instrument at the SG-II 5 PW laser facility, which employs f/23 focusing. The setup also adapted an online probing of the plasma density via Nomarski interferometry using a probe laser beam having 30 fs pulse duration. By focusing 1-PW, 30-fs laser pulses down to a focal spot of 230 mu m, the peak laser intensity reached a mild-relativistic level of 2.6 x 10(18) W/cm(2), a level modest for standard LWFA experiments. Despite the large aspect ratio of >25:1 (transverse to longitudinal dimensions) of the laser pulse, electron beams were observed in our experiment only when the laser pulse experienced relativistic self-focusing at high gas-pressure thresholds, corresponding to plasma densities higher than 3 x 10(18) cm(-3). Published under an exclusive license by AIP Publishing.
引用
收藏
页数:11
相关论文
共 45 条
  • [1] Buck A, 2011, NAT PHYS, V7, P543, DOI [10.1038/NPHYS1942, 10.1038/nphys1942]
  • [2] Identification of Coupling Mechanisms between Ultraintense Laser Light and Dense Plasmas
    Chopineau, L.
    Leblanc, A.
    Blaclard, G.
    Denoeud, A.
    Thevenet, M.
    Vay, J-L.
    Bonnaud, G.
    Martin, Ph.
    Vincenti, H.
    Quere, F.
    [J]. PHYSICAL REVIEW X, 2019, 9 (01):
  • [3] Femtosecond x rays from laser-plasma accelerators
    Corde, S.
    Phuoc, K. Ta
    Lambert, G.
    Fitour, R.
    Malka, V.
    Rousse, A.
    Beck, A.
    Lefebvre, E.
    [J]. REVIEWS OF MODERN PHYSICS, 2013, 85 (01) : 1 - 48
  • [4] Review of laser-driven ion sources and their applications
    Daido, Hiroyuki
    Nishiuchi, Mamiko
    Pirozhkov, Alexander S.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (05)
  • [5] Petawatt and exawatt class lasers worldwide
    Danson, Colin N.
    Haefner, Constantin
    Bromage, Jake
    Butcher, Thomas
    Chanteloup, Jean-Christophe F.
    Chowdhury, Enam A.
    Galvanauskas, Almantas
    Gizzi, Leonida A.
    Hein, Joachim
    Hillier, David, I
    Hopps, Nicholas W.
    Kato, Yoshiaki
    Khazanov, Em A.
    Kodama, Ryosuke
    Korn, Georg
    Li, Ruxin
    Li, Yutong
    Limpert, Jens
    Ma, Jingui
    Nam, Chang Hee
    Neely, David
    Papadopoulos, Dimitrios
    Penman, Rory R.
    Qian, Liejia
    Rocca, Jorge J.
    Shaykin, Andrey A.
    Siders, Craig W.
    Spindloe, Christopher
    Szatmari, Sandor
    Trines, Raoul M. G. M.
    Zhu, Jianqiang
    Zhu, Ping
    Zuegel, Jonathan D.
    [J]. HIGH POWER LASER SCIENCE AND ENGINEERING, 2019, 7
  • [6] SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation
    Derouillat, J.
    Beck, A.
    Perez, F.
    Vinci, T.
    Chiaramello, M.
    Grassi, A.
    Fle, M.
    Bouchard, G.
    Plotnikov, I.
    Aunai, N.
    Dargent, J.
    Riconda, C.
    Grech, M.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 : 351 - 373
  • [7] Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-Plasma Interaction
    Dong, Quan-Li
    Wang, Shou-Jun
    Lu, Quan-Ming
    Huang, Can
    Yuan, Da-Wei
    Liu, Xun
    Lin, Xiao-Xuan
    Li, Yu-Tong
    Wei, Hui-Gang
    Zhong, Jia-Yong
    Shi, Jian-Rong
    Jiang, Shao-En
    Ding, Yong-Kun
    Jiang, Bo-Bin
    Du, Kai
    He, Xian-Tu
    Yu, M. Y.
    Liu, C. S.
    Wang, Shui
    Tang, Yong-Jian
    Zhu, Jian-Qiang
    Zhao, Gang
    Sheng, Zheng-Ming
    Zhang, Jie
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (21)
  • [8] Physics of laser-driven plasma-based electron accelerators
    Esarey, E.
    Schroeder, C. B.
    Leemans, W. P.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (03) : 1229 - 1285
  • [9] Flacco A, 2015, NAT PHYS, V11, P409, DOI [10.1038/nphys3303, 10.1038/NPHYS3303]
  • [10] Laser-driven soft-X-ray undulator source
    Fuchs, Matthias
    Weingartner, Raphael
    Popp, Antonia
    Major, Zsuzsanna
    Becker, Stefan
    Osterhoff, Jens
    Cortrie, Isabella
    Zeitler, Benno
    Hoerlein, Rainer
    Tsakiris, George D.
    Schramm, Ulrich
    Rowlands-Rees, Tom P.
    Hooker, Simon M.
    Habs, Dietrich
    Krausz, Ferenc
    Karsch, Stefan
    Gruener, Florian
    [J]. NATURE PHYSICS, 2009, 5 (11) : 826 - 829