Downstream variations of air-gap membrane distillation and comparative study with direct contact membrane distillation: A modelling approach

被引:20
作者
Ansari, Abolfazl [1 ]
Galogahi, Fariba Malekpour [1 ]
Thiel, David, V [1 ]
Helfer, Fernanda [1 ]
Millar, Graeme [2 ]
Soukane, Sofiane [3 ]
Ghaffour, Noreddine [3 ]
机构
[1] Griffith Univ, Sch Engn & Built Environm, Brisbane, Qld 4111, Australia
[2] Queensland Univ Technol QUT, Inst Future Environm, Sch Mech Med & Proc Engn, Fac Sci & Engn, Brisbane, Qld 4000, Australia
[3] King Abdullah Univ Sci & Technol KAUST, Water Desalinat & Reuse Ctr WDRC, Biol & Environm Sci & Engn BESE Div, Thuwal 239556900, Saudi Arabia
关键词
Direct Contact Membrane Distillation; Air-Gap Membrane Distillation; Modelling; Temperature polarisation; Concentration polarisation; SEAWATER DESALINATION; THERMAL-CONDUCTIVITY; MASS-TRANSFER; TRANSPORT; PERFORMANCE; MODULE; FLUX;
D O I
10.1016/j.desal.2021.115539
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Air-Gap Membrane Distillation (AGMD) promises to reduce heat loss in membrane distillation. Most AGMD models are one-dimensional and do not consider the downstream variations. In addition, a linear function of vapour pressure is used, which either relies on experimentally determined parameters or a simplified mass transfer resistance to model the water permeate flux. This study introduces a new, improved model that simultaneously considers both heat and mass transfer in the AGMD process by coupling the continuity, momentum, and energy equations. A novel precise logarithmic function of vapour pressure was derived to model the water permeate flux, independent of experimentally determined parameters. By varying the inlet temperature, Reynolds number, inlet concentration, and air-gap thickness, the performance of AGMD was evaluated. The results revealed that our model improved the water flux prediction from more than 10% to less than 4% deviation from experimental results. Among the operating conditions, only increasing the Reynolds number improved all the system performance metrics, including higher water flux and lower temperature and concentration polarisation effects. Results were compared with Direct Contact Membrane Distillation (DCMD) outcomes and showed that unlike AGMD, DCMD suffers from a substantial decrease in water flux along the module. For DCMD, the exit water flux value decreased by 50% in comparison with the inlet value, while the water flux decreased by only 2% for AGMD, using a 1 mm air gap thickness.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Energy efficiency of direct contact membrane distillation
    Ullah, Ruh
    Khraisheh, Majeda
    Esteves, Richard J.
    McLeskey, James T., Jr.
    AlGhouti, Mohammad
    Gad-el-Hak, Mohamed
    Tafreshi, H. Vahedi
    DESALINATION, 2018, 433 : 56 - 67
  • [22] Air gap membrane distillation: A review
    Shahu, Vandita T.
    Thombre, S. B.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2019, 11 (04)
  • [23] Comparative study of small-scale flat-plate direct contact membrane distillation and vacuum membrane distillation modules with integrated direct solar heating
    Ma, Qiuming
    Ahmadi, Aras
    Cabassud, Corinne
    DESALINATION, 2022, 529
  • [24] Air gap membrane distillation on the different types of membrane
    He, Ke
    Hwang, Ho Jung
    Moon, Il Shik
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (03) : 770 - 777
  • [25] Air gap membrane distillation on the different types of membrane
    Ke He
    Ho Jung Hwang
    Il Shik Moon
    Korean Journal of Chemical Engineering, 2011, 28 : 770 - 777
  • [26] Direct contact membrane distillation system for waste heat recovery: Modelling and multi-objective optimization
    Long, Rui
    Lai, Xiaotian
    Liu, Zhichun
    Liu, Wei
    ENERGY, 2018, 148 : 1060 - 1068
  • [27] Development of a self-sustained model to predict the performance of direct contact membrane distillation
    Noamani, Sadaf
    Niroomand, Shirin
    Rastgar, Masoud
    McDonald, Andre
    Sadrzadeh, Mohtada
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 263
  • [28] Distillation Process of Smelting Waste Acid by Tube-Type Air-Gap Membrane Distillation
    Li W.
    Ji Z.
    Wang W.
    Sun Q.
    Huang X.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2020, 44 (06): : 639 - 646
  • [29] EXPERIMENTAL AND COMPUTATIONAL STUDY OF DIRECT CONTACT MEMBRANE DISTILLATION
    Kim, Deliya
    Caspar, Justin
    Romero, Carlos
    Neti, Sudhakar
    Oztekin, Alparslan
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 10, 2021,
  • [30] Theoretical and experimental study of direct contact membrane distillation
    Janajreh, Isam
    Suwwan, Dana
    Hashaikeh, Raed
    DESALINATION AND WATER TREATMENT, 2016, 57 (33) : 15660 - 15675