A trade-off study toward highly thermally conductive and mechanically robust thermoplastic composites by injection moulding

被引:25
作者
Ren, Yanjuan [1 ]
Guo, Haichang [1 ]
Liu, Yuhang [2 ]
Lv, Ruicong [1 ]
Zhang, Yafei [1 ]
Maqbool, M. [1 ]
Bai, Shulin [1 ]
机构
[1] Peking Univ, Coll Engn, Minist Educ, Dept Mat Sci & Engn,HEDPS CAPT LTCS,Key Lab Polym, Beijing 100871, Peoples R China
[2] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Sichuan, Peoples R China
关键词
Thermoplastic composites; Graphene sheets; Thermal and mechanical properties; Processing method; GRAPHENE OXIDE; POLYMER COMPOSITES; GRAPHITE; ENHANCEMENT; NANOCOMPOSITES; NANOSHEETS; REDUCTION; NANOTUBES; FRAMEWORK; SYNERGY;
D O I
10.1016/j.compscitech.2019.107787
中图分类号
TB33 [复合材料];
学科分类号
摘要
In order to achieve high thermal conductivity (TC) for graphene-reinforced thermoplastic polymer composites, many efforts have been made to reduce the interfacial thermal resistance. However, good mechanical properties may be conflicting with thermal properties due to the poor interaction bonding between matrix and fillers. In this work, graphene sheets (GSs) filled thermoplastic polypropylene (PP) composite are prepared by three different moulding methods: i) melt extrusion with subsequent injection moulding, ii) single injection moulding and iii) hot-pressing. The relationship among processing methods, microstructures and properties are systematically demonstrated in detail. It is found that single injection moulding can be used to realize a random distribution of the filler with modest size to keep good mechanical properties, and an acceptable conductive network in the matrix to improve the thermal transfer ability of the composites. As a result, high TC of 2.07 Wm(-1)K(-1) and tensile strength of 24 MPa are simultaneously achieved for 20 wt% GSs/PP composite, realizing a tradeoff between thermal and mechanical properties. Finite element simulation is also conducted to perceive the dependence of the thermal properties on the size and distribution of GSs filler. We think that this work provides an instructive route to design thermoplastic composites with overall consideration of thermal and mechanical properties and allows a considerable step to its industrial application.
引用
收藏
页数:8
相关论文
共 41 条
  • [1] In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity
    Alam, Fakhr E.
    Dai, Wen
    Yang, Minghui
    Du, Shiyu
    Li, Xinming
    Yu, Jinhong
    Jiang, Nan
    Lin, Cheng-Te
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (13) : 6164 - 6169
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [4] Review of thermal conductivity in composites: Mechanisms, parameters and theory
    Burger, N.
    Laachachi, A.
    Ferriol, M.
    Lutz, M.
    Toniazzo, V.
    Ruch, D.
    [J]. PROGRESS IN POLYMER SCIENCE, 2016, 61 : 1 - 28
  • [5] Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites
    Chatterjee, S.
    Nafezarefi, F.
    Tai, N. H.
    Schlagenhauf, L.
    Nueesch, F. A.
    Chu, B. T. T.
    [J]. CARBON, 2012, 50 (15) : 5380 - 5386
  • [6] Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation
    Che, Junjin
    Jing, Mengfan
    Liu, Dingyao
    Wang, Ke
    Fu, Qiang
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 112 : 32 - 39
  • [7] Highly Thermally Conductive Yet Electrically Insulating Polymer/Boron Nitride Nanosheets Nanocomposite Films for Improved Thermal Management Capability
    Chen, Jin
    Huang, Xingyi
    Sun, Bin
    Jiang, Pingkai
    [J]. ACS NANO, 2019, 13 (01) : 337 - 345
  • [8] Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel
    Chen, Li
    Hou, Xingshuang
    Song, Na
    Shi, Liyi
    Ding, Peng
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 107 : 189 - 196
  • [9] Thermal Conductive and Mechanical properties of Polymeric Composites Based on Solution-Exfoliated Boron Nitride and Graphene Nanosheets: A Morphology-Promoted Synergistic Effect
    Cui, Xieliang
    Ding, Peng
    Zhuang, Nan
    Shi, Liyi
    Song, Na
    Tang, Shengfu
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) : 19068 - 19075
  • [10] Microstructure engineering of graphene towards highly thermal conductive composites
    Fang, Haoming
    Bai, Shu-Lin
    Wong, Ching Ping
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 112 : 216 - 238