On the Euler plus Prandtl Expansion for the Navier-Stokes Equations

被引:0
作者
Kukavica, Igor [1 ]
Nguyen, Trinh T. [1 ]
Vicol, Vlad [2 ]
Wang, Fei [3 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Shanghai Jiao Tong Univ, Sch Math Sci, CMA Shanghai, Shanghai, Peoples R China
基金
美国国家科学基金会;
关键词
Inviscid limit; Navier-Stokes equations; Euler equations; Prandtl expansion; Analyticity; ZERO-VISCOSITY LIMIT; VANISHING VISCOSITY; INVISCID LIMIT; BOUNDARY-LAYER; ANALYTIC SOLUTIONS; WELL-POSEDNESS; ILL-POSEDNESS; VORTICITY EQUATIONS; HALF-SPACE; EXISTENCE;
D O I
10.1007/s00021-021-00645-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the validity of the Euler+Prandtl approximation for solutions of the Navier-Stokes equations in the half plane with the Dirichlet boundary conditions, in the vanishing viscosity limit, for initial data which are analytic only near the boundary, and Sobolev smooth away from the boundary. Our proof does not require higher order correctors, and works directly by estimating an L-1-type norm for the vorticity of the error term in the expansion Navier-Stokes-(Euler+Prandtl). An important ingredient in the proof is the propagation of local analyticity for the Euler equation, a result of independent interest
引用
收藏
页数:46
相关论文
共 62 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[3]  
[Anonymous], 1997, Annali della Scuola normale superiore di Pisa, Classe di scienze
[4]  
[Anonymous], 1984, SEMINAR NONLINEAR PD
[5]  
Bardos C., 2013, ARXIV PREPRINT ARXIV
[6]   The zero-viscosity limit of the 2D Navier-Stokes equations [J].
Bona, JL ;
Wu, JH .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) :265-278
[7]   Navier-Stokes equations on an exterior circular domain: construction of the solution and the zero viscosity limit [J].
Caflisch, R ;
Sammartino, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08) :861-866
[8]  
Constantin P, 2018, ARXIV180903661
[9]   Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit [J].
Constantin, Peter ;
Vicol, Vlad .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) :711-724
[10]   REMARKS ON THE INVISCID LIMIT FOR THE NAVIER-STOKES EQUATIONS FOR UNIFORMLY BOUNDED VELOCITY FIELDS [J].
Constantin, Peter ;
Elgind, Tarek ;
Ignatova, Mihaela ;
Vicol, Vlad .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (03) :1932-1946