Strength prediction of circular CFST columns through advanced machine learning methods

被引:68
作者
Hou, Chao [1 ,2 ]
Zhou, Xiao-Guang [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Marine Sci & Engn Guangdong Lab Guangzho, Guangzhou 511485, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2022年 / 51卷
关键词
Concrete-filled steel tube (CFST); Machine learning (ML); Strength prediction; Axial compression strength; Correlation analysis; STEEL TUBULAR COLUMNS; LOAD-CARRYING CAPACITY; STUB COLUMNS; EXPERIMENTAL BEHAVIOR; TUBE COLUMNS; COMPRESSIVE STRENGTH; CONFINED CONCRETE; BEARING CAPACITY; AXIAL CAPACITY; HSS COLUMNS;
D O I
10.1016/j.jobe.2022.104289
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Concrete-filled steel tube (CFST), well recognized for its excellent mechanical behaviour and economic efficiency, is widely used as a main load-carrying component in various kinds of structures. Machine learning (ML) is one of the promising artificial intelligence methods which just starts to be utilized for the advanced prediction of structural performances. This paper attempts to evaluate the feasibility of combining mechanism analysis to optimize ML models in predicting the axial compression strength of circular CFST columns. A comprehensive database containing 2,045 circular CFSTs under axial loading was established through extensive literature survey. Based on correlation analysis and mechanism analysis, input parameters for ML models were rationally selected. Then back-propagation neural network (BPNN), genetic algorithm (GA)BPNN, radial basis function neural network (RBFNN), Gaussian process regression (GPR) and multiple linear regression (MLR) models were established. It was revealed that the established ML models, especially GPR, could reliably predict the strengths of CFST with higher accuracies and wider applicable ranges than existing methods in current design standards. By subdividing the database according to column slenderness, ML models achieved improved accuracy for strength prediction, whilst little effect on the model accuracy was generated by random subdivisions. This indicates that when adopting ML methods in structural engineering sector, optimization of the models can be expected on the basis of rational understanding towards the corresponding structural mechanism.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Compressive strength prediction of high-strength concrete using machine learning
    Davawala, Manan
    Joshi, Tanmay
    Shah, Manan
    EMERGENT MATERIALS, 2023, 6 (01) : 321 - 335
  • [42] Compressive strength prediction of high-strength concrete using machine learning
    Manan Davawala
    Tanmay Joshi
    Manan Shah
    Emergent Materials, 2023, 6 : 321 - 335
  • [43] Compressive strength prediction of high-strength oil palm shell lightweight aggregate concrete using machine learning methods
    Ghanbari, Saeed
    Shahmansouri, Amir Ali
    Bengar, Habib Akbarzadeh
    Jafari, Abouzar
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (01) : 1096 - 1115
  • [44] Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques
    Ahmad, Ayaz
    Ahmad, Waqas
    Aslam, Fahid
    Joyklad, Panuwat
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [45] Compressive Strength Prediction of Lightweight Concrete: Machine Learning Models
    Kumar, Aman
    Arora, Harish Chandra
    Kapoor, Nishant Raj
    Mohammed, Mazin Abed
    Kumar, Krishna
    Majumdar, Arnab
    Thinnukool, Orawit
    SUSTAINABILITY, 2022, 14 (04)
  • [46] Machine learning and interactive GUI for concrete compressive strength prediction
    Elshaarawy, Mohamed Kamel
    Alsaadawi, Mostafa M.
    Hamed, Abdelrahman Kamal
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] PREDICTION OF STRENGTH DEVELOPMENT OF STRUCTURAL CONCRETE USING MACHINE LEARNING
    Isobe R.
    Sato S.
    Yamada Y.
    Higa R.
    AIJ Journal of Technology and Design, 2023, 29 (72): : 591 - 596
  • [48] Machine Learning Technique for the Prediction of Blended Concrete Compressive Strength
    Dawood S. A. Jubori
    Abu B. Nabilah
    Nor A. Safiee
    Aidi H. Alias
    Noor A. M. Nasir
    KSCE Journal of Civil Engineering, 2024, 28 : 817 - 835
  • [49] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B. K.
    Maheshwari, Rohit
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [50] Analyzing the influence of manufactured sand and fly ash on concrete strength through experimental and machine learning methods
    Sathvik, S.
    Oyebisi, Solomon
    Kumar, Rakesh
    Shakor, Pshtiwan
    Adejonwo, Olutosin
    Tantri, Adithya
    Suma, V
    SCIENTIFIC REPORTS, 2025, 15 (01):