A lightweight neural network with multiscale feature enhancement for liver CT segmentation

被引:82
作者
Ansari, MohammedYusuf [1 ]
Yang, Yin [2 ]
Balakrishnan, Shidin [1 ]
Abinahed, Julien [1 ]
Al-Ansari, Abdulla [1 ]
Warfa, Mohamed [7 ]
Almokdad, Omran [1 ]
Barah, Ali [1 ]
Omer, Ahmed [1 ]
Singh, AjayVikram [6 ]
Meher, Pramod Kumar [5 ]
Bhadra, Jolly [3 ]
Halabi, Osama [3 ]
Azampour, Mohammad Farid [4 ]
Navab, Nassir [4 ]
Wendler, Thomas [4 ]
Dakua, Sarada Prasad [1 ]
机构
[1] Hamad Med Corp, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Doha, Qatar
[3] Qatar Univ, Doha, Qatar
[4] Tech Univ Munich, Munich, Germany
[5] CV Raman Global Univ, Bhubaneswar, India
[6] German Fed Inst Risk Assessment BfR, Berlin, Germany
[7] Wake Forest Baptist Med Ctr, Winston Salem, NC USA
关键词
ARCHITECTURE; TUMORS;
D O I
10.1038/s41598-022-16828-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Segmentation of abdominal Computed Tomography (CT) scan is essential for analyzing, diagnosing, and treating visceral organ diseases (e.g., hepatocellular carcinoma). This paper proposes a novel neural network (Res-PAC-UNet) that employs a fixed-width residual UNet backbone and Pyramid Atrous Convolutions, providing a low disk utilization method for precise liver CT segmentation. The proposed network is trained on medical segmentation decathlon dataset using a modified surface loss function. Additionally, we evaluate its quantitative and qualitative performance; the Res16-PAC-UNet achieves a Dice coefficient of 0.950 +/- 0.019 with less than half a million parameters. Alternatively, the Res32-PAC-UNet obtains a Dice coefficient of 0.958 +/- 0.015 with an acceptable parameter count of approximately 1.2 million.
引用
收藏
页数:12
相关论文
共 39 条
[1]  
Abdel-massieh N.H., 2010, The 7th International Conference on Informatics and Systems (INFOS), P1
[2]   Risk Assessment of Computer-Aided Diagnostic Software for Hepatic Resection [J].
Akhtar, Yusuf ;
Dakua, Sarada Prasad ;
Abdalla, Alhusain ;
Aboumarzouk, Omar Mousa ;
Ansari, Mohammed Yusuf ;
Abinahed, Julien ;
Elakkad, Mohamed Soliman Mohamed ;
Al-Ansari, Abdulla .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2022, 6 (06) :667-677
[3]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[4]   Practical utility of liver segmentation methods in clinical surgeries and interventions [J].
Ansari, Mohammed Yusuf ;
Abdalla, Alhusain ;
Ansari, Mohammed Yaqoob ;
Ansari, Mohammed Ishaq ;
Malluhi, Byanne ;
Mohanty, Snigdha ;
Mishra, Subhashree ;
Singh, Sudhansu Sekhar ;
Abinahed, Julien ;
Al-Ansari, Abdulla ;
Balakrishnan, Shidin ;
Dakua, Sarada Prasad .
BMC MEDICAL IMAGING, 2022, 22 (01)
[5]   CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm [J].
Anter, Ahmed M. ;
Hassenian, Aboul Ella .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 97 :105-117
[6]  
Antonelli M., ARXIV
[7]   Semi-Automated Segmentation of Single and Multiple Tumors in Liver CT Images Using Entropy-Based Fuzzy Region Growing [J].
Baazaoui, A. ;
Barhoumi, W. ;
Ahmed, A. ;
Zagrouba, E. .
IRBM, 2017, 38 (02) :98-108
[8]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[9]   Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing [J].
Chlebus, Grzegorz ;
Schenk, Andrea ;
Moltz, Jan Hendrik ;
van Ginneken, Bram ;
Hahn, Horst Karl ;
Meine, Hans .
SCIENTIFIC REPORTS, 2018, 8
[10]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49