共 50 条
State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials
被引:206
|作者:
Ren, Shuning
[1
]
Yu, Haojie
[1
]
Wang, Li
[1
]
Huang, Zhikun
[1
]
Lin, Tengfei
[1
]
Huang, Yudi
[1
]
Yang, Jian
[1
]
Hong, Yichuan
[1
]
Liu, Jinyi
[1
]
机构:
[1] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, Hangzhou 310027, Peoples R China
关键词:
Microwave absorption materials;
Metal-organic frameworks;
Preparation methods;
Mechanisms of microwave absorption;
ELECTROMAGNETIC-WAVE ABSORPTION;
ZEOLITIC IMIDAZOLATE FRAMEWORKS;
ENHANCED INFRARED REFLECTANCE;
CARBON NANOTUBE;
ABSORBING PROPERTIES;
THERMAL-CONVERSION;
RECENT PROGRESS;
ENERGY-STORAGE;
GRAPHENE OXIDE;
MNO NANORODS;
D O I:
10.1007/s40820-022-00808-6
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Microwave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human's daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal-organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area. Usually, MOF-derived MAMs exhibit excellent electrical conductivity, good magnetism and sufficient defects and interfaces, providing obvious merits in both impedance matching and microwave loss. In this review, the recent research progresses on MOF-derived MAMs were profoundly reviewed, including the categories of MOFs and MOF composites precursors, design principles, preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs. Finally, the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
引用
收藏
页数:39
相关论文