Flexural behavior analysis and strength prediction of steel fiber-and-nanosilica reinforced rubber concrete

被引:1
作者
Gao, Danying [1 ,2 ]
Zhang, Tao [1 ]
Pang, Yuyang [2 ]
Wang, Yihong [2 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy Engn, 100 Sci Rd, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Civil Engn, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
rubber concrete; nanosilica; hook-shaped steel fiber; flexural behavior; flexural strength prediction; HIGH-PERFORMANCE CONCRETE; MECHANICAL-PROPERTIES; NANO-SILICA; CRUMB RUBBER; IMPACT RESISTANCE; TIRE RUBBER; CEMENT; AGGREGATE; NANO-SIO2; PARTICLES;
D O I
10.1177/13694332211050988
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, a series of experiments were conducted to investigate the effects of the hook-shaped steel fiber (SF) and nanosilica (NS) on the flexural properties of the rubber concrete (RC), and the modification mechanisms of the NS on the flexural properties of steel fiber-and-nanosilica reinforced rubber concrete (SFNS-RC) were also revealed by using the X-ray diffraction (XRD) and scanning electron microscope. Based on the RC specimen with a rubber content of 5%, the experimental variables included the SF volume fractions (0%, 0.5%, 1.0%, and 1.5%) and NS replacement ratios (0%, 1%, and 2%). The results indicated that the NS could improve the microstructure of the RC, the peaks of Ca(OH)(2), C3S, and C2S steadily reduced as the NS replacement ratio increased, respectively, and the microstructure of SFNS-RC became more compact and uniform because the NS could produce pozzolanic activity to fill the pores of the matrix and strengthen the bond behavior between the SF and matrix. In addition, the RC specimens containing the SF and NS displayed the excellent flexural behaviors, including the ductility and energy dissipation characteristics. Finally, the empirical formulae for predicting the first-peak flexural strength and peak flexural strength of SFNS-RC were proposed through the analysis of experimental data, respectively.
引用
收藏
页码:864 / 876
页数:13
相关论文
共 50 条
  • [41] Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete
    Li, Biao
    Chi, Yin
    Xu, Lihua
    Shi, Yuchuan
    Li, Changning
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 191 : 80 - 94
  • [42] FLEXURAL BEHAVIOR OF REINFORCED HOLLOW HIGH STRENGTH CONCRETE FILLED SQUARE STEEL TUBE
    Yang, Zhi-Jian
    Zhang, Shu
    Cui, Wei-Zhe
    Li, Guo-Chang
    ADVANCED STEEL CONSTRUCTION, 2024, 20 (02): : 199 - 207
  • [43] Mechanical and fracture properties of steel fiber-reinforced geopolymer concrete
    Zhang, Peng
    Wang, Jia
    Li, Qingfu
    Wan, Jinyi
    Ling, Yifeng
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2021, 28 (01) : 299 - 313
  • [44] Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber
    Xie Jian-he
    Guo Yong-chang
    Liu Li-sha
    Xie Zhi-hong
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 79 : 263 - 272
  • [45] Flexural Behavior of Beams with Ultra High Performance Fiber Reinforced Concrete
    Turker, Kaan
    Birol, Tamer
    Yavas, Altug
    Hasgul, Umut
    Yazici, Halit
    TEKNIK DERGI, 2019, 30 (01): : 8777 - 8801
  • [46] Flexural Behavior of Reinforced Concrete Beams Reinforced with Glass Fiber Reinforced Polymer Rectangular Tubes
    Yuan, Jian Song
    Gao, Danying
    Zhu, Haitang
    Chen, Gang
    Zhao, Liangping
    FRONTIERS IN MATERIALS, 2020, 7
  • [47] Prediction of deflection of high strength steel fiber reinforced concrete beams and columns
    Kara, Ilker Fatih
    Dundar, Cengiz
    COMPUTERS AND CONCRETE, 2012, 9 (02) : 133 - 151
  • [48] Flexural response of fiber reinforced concrete beams with waste tires rubber and recycled aggregate
    Shahjalal, Md.
    Islam, Kamrul
    Rahman, Jesika
    Ahmed, Khondaker Sakil
    Karim, Mohammad Rezaul
    Billah, A. H. M. Muntasir
    JOURNAL OF CLEANER PRODUCTION, 2021, 278
  • [49] Parametric study on the flexural behavior of steel fiber reinforced concrete beams utilizing nonlinear finite element analysis
    Fares, Anas M. H.
    Bakir, Burcu Burak
    STRUCTURES, 2024, 65
  • [50] Effect of Fiber Volume Fraction on Compressive and Flexural Properties of High-Strength Steel Fiber Reinforced Concrete
    Lim, Kyung Ahn
    Joon, Seok Jang
    Jun, Yeon Yun
    Geun, Dea Yu
    Do, Hyun Yun
    Advance Materials Development and Applied Mechanics, 2014, 597 : 296 - 299