Flexural behavior analysis and strength prediction of steel fiber-and-nanosilica reinforced rubber concrete

被引:1
|
作者
Gao, Danying [1 ,2 ]
Zhang, Tao [1 ]
Pang, Yuyang [2 ]
Wang, Yihong [2 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy Engn, 100 Sci Rd, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Civil Engn, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
rubber concrete; nanosilica; hook-shaped steel fiber; flexural behavior; flexural strength prediction; HIGH-PERFORMANCE CONCRETE; MECHANICAL-PROPERTIES; NANO-SILICA; CRUMB RUBBER; IMPACT RESISTANCE; TIRE RUBBER; CEMENT; AGGREGATE; NANO-SIO2; PARTICLES;
D O I
10.1177/13694332211050988
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, a series of experiments were conducted to investigate the effects of the hook-shaped steel fiber (SF) and nanosilica (NS) on the flexural properties of the rubber concrete (RC), and the modification mechanisms of the NS on the flexural properties of steel fiber-and-nanosilica reinforced rubber concrete (SFNS-RC) were also revealed by using the X-ray diffraction (XRD) and scanning electron microscope. Based on the RC specimen with a rubber content of 5%, the experimental variables included the SF volume fractions (0%, 0.5%, 1.0%, and 1.5%) and NS replacement ratios (0%, 1%, and 2%). The results indicated that the NS could improve the microstructure of the RC, the peaks of Ca(OH)(2), C3S, and C2S steadily reduced as the NS replacement ratio increased, respectively, and the microstructure of SFNS-RC became more compact and uniform because the NS could produce pozzolanic activity to fill the pores of the matrix and strengthen the bond behavior between the SF and matrix. In addition, the RC specimens containing the SF and NS displayed the excellent flexural behaviors, including the ductility and energy dissipation characteristics. Finally, the empirical formulae for predicting the first-peak flexural strength and peak flexural strength of SFNS-RC were proposed through the analysis of experimental data, respectively.
引用
收藏
页码:864 / 876
页数:13
相关论文
共 50 条
  • [31] Mesoscale modeling of flexural fracture behavior in steel fiber reinforced concrete
    Yu, Yong
    Xu, Jinjun
    Chen, Weisen
    Wu, Bo
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (04) : 565 - 584
  • [32] Flexural behavior and serviceability of steel fiber-reinforced lightweight aggregate concrete beams reinforced with high-strength steel bars
    Xiao, Zhengyan
    Wei, Hui
    Wu, Tao
    Ren, Wentao
    Li, Xiaoli
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 437
  • [33] FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE
    Civici, Fehmi
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2006, 12 (02): : 183 - 188
  • [34] STEEL FIBER REINFORCED AND PLAIN CONCRETE - FACTORS INFLUENCING FLEXURAL STRENGTH MEASUREMENT
    HALVORSEN, GT
    JOHNSTON, CD
    JOURNAL OF THE AMERICAN CONCRETE INSTITUTE, 1983, 80 (01): : 63 - 64
  • [35] STEEL FIBER REINFORCED AND PLAIN CONCRETE - FACTORS INFLUENCING FLEXURAL STRENGTH MEASUREMENT
    JOHNSTON, CD
    JOURNAL OF THE AMERICAN CONCRETE INSTITUTE, 1982, 79 (02): : 131 - 138
  • [36] Flexural behavior of concrete beams reinforced with glass fiber reinforced polymer and steel bars
    Farias, Cristian Espindola
    Pessi, Sarah Lodeti
    Wanderlind, Augusto
    Piva, Jorge Henrique
    Antunes, Elaine Guglielmi Pavei
    REVISTA DE LA CONSTRUCCION, 2022, 21 (03): : 506 - 522
  • [37] EXPERIMENTAL RESEARCH ON FLEXURAL TENSILE PROPERTIES OF LAYER STEEL FIBER REINFORCED RUBBER CONCRETE
    Ma Guang-Yue
    Fan Xiao-Chun
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON MECHANICAL, INDUSTRIAL, AND MANUFACTURING TECHNOLOGIES (MIMT 2010), 2010, : 69 - 72
  • [38] Behavior analysis and strength prediction of steel fiber reinforced recycled aggregate concrete column under axial compression
    Gao, Danying
    Li, Wenbin
    Pang, Yuyang
    Huang, Yunchao
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 290
  • [39] BEHAVIOR OF HYBRID STEEL FIBER REINFORCED HIGH STRENGTH CONCRETE
    Balanji, Emdad K. Z.
    Sheikh, M. Neaz
    Hadi, Muhammad N. S.
    PROCEEDINGS OF INTERNATIONAL STRUCTURAL ENGINEERING AND CONSTRUCTION: INTERACTION BETWEEN THEORY AND PRACTICE IN CIVIL ENGINEERING AND CONSTRUCTION, 2016, : 29 - 34
  • [40] Flexural Behavior of Steel Fiber Reinforced Concrete Beams: Probabilistic Numerical Modeling and Sensitivity Analysis
    Blagojevic, Predrag
    Blagojevic, Nikola
    Kukaras, Danijel
    APPLIED SCIENCES-BASEL, 2021, 11 (20):