Radiomics features on ultrasound imaging for the prediction of disease-free survival in triple negative breast cancer: a multi-institutional study

被引:35
作者
Yu, Feihong [1 ]
Hang, Jing [1 ]
Deng, Jing [1 ]
Yang, Bin [2 ]
Wang, Jianxiang [1 ]
Ye, Xinhua [1 ]
Liu, Yun [3 ]
机构
[1] Nanjing Med Univ, Affiliated Hosp 1, Dept Ultrasound, Nanjing, Peoples R China
[2] Nanjing Med Univ, Jinling Clin Med Coll, Dept Ultrasound, Nanjing, Peoples R China
[3] Nanjing Med Univ, Affiliated Hosp 1, Dept Informat, Nanjing, Peoples R China
关键词
HETEROGENEITY; CARCINOMA;
D O I
10.1259/bjr.20210188
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To explore the predictive value of radiomics nomogram using pretreatment ultrasound for disease-free survival (DFS) after resection of triple negative breast cancer (TNBC). Methods and materials: A total of 486 TNBC patients from 3 different institutions were consecutively recruited for this study. They were categorized into the primary cohort (n = 216), as well as the internal validation cohort (n = 108) and external validation cohort (n = 162). In primary cohort, least absolute shrinkage and selection operator logistic regression algorithm was used to select recurrence-related radiomics features extracted from the breast tumor and peritumor regions, and a radiomics signature was constructed derived from the grayscale ultrasound images. A radiomic nomogram integrating independent clinicopathological variables and radiomic signature was established with uni- and multivariate cox regressions. The predictive nomogram was validated using an internal cohort and an independent external cohort regarding abilities of discrimination, calibration and clinical usefulness. Results: The patients with higher Rad-score had a worse prognostic outcome than those with lower Rad-score in primary cohort and two validation cohorts (All p < 0.05). The radiomics nomogram indicated more effective prognostic performance compared with the clinicopathological model and tumor node metastasis staging system (p < 0.01), with a training C-index of 0.75 (95% confidence interval (CI), 0.71-0.80), an internal validation C-index of 0.73 (95% CI, 0.69-0.78) and an external validation 0.71 (95% CI,0.66-0.76). Moreover, the calibration curves revealed a good consistency for survival prediction of the radiomics model. Conclusions: The ultrasound-based radiomics signature was a promising biomarker for risk stratification for TNBC patients. Furthermore, the proposed radiomics modal integrating the optimal radiomics features and clinical data provided individual relapse risk accurately. Advances in knowledge: The radiomics model integrating radiomic signature and independent clinicopathological variables could improve individual prognostic evaluation and facilitate therapeutic decision-making, which demonstrated the incremental value of the radiomics signature for prognostic prediction in TNBC.
引用
收藏
页数:9
相关论文
共 31 条
[1]   Sonographic correlations with the new molecular classification of invasive breast cancer [J].
Au-Yong, I. T. H. ;
Evans, A. J. ;
Taneja, S. ;
Rakha, E. A. ;
Green, A. R. ;
Paish, C. ;
Ellis, I. O. .
EUROPEAN RADIOLOGY, 2009, 19 (10) :2342-2348
[2]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[3]   Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease [J].
Bianchini, Giampaolo ;
Balko, Justin M. ;
Mayer, Ingrid A. ;
Sanders, Melinda E. ;
Gianni, Luca .
NATURE REVIEWS CLINICAL ONCOLOGY, 2016, 13 (11) :674-690
[4]   Triple-negative breast cancer in the older population [J].
Boyle, P. .
ANNALS OF ONCOLOGY, 2012, 23 :7-12
[5]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[6]   Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from multi-institutional study [J].
DiCenzo, Daniel ;
Quiaoit, Karina ;
Fatima, Kashuf ;
Bhardwaj, Divya ;
Sannachi, Lakshmanan ;
Gangeh, Mehrdad ;
Sadeghi-Naini, Ali ;
Dasgupta, Archya ;
Kolios, Michael C. ;
Trudeau, Maureen ;
Gandhi, Sonal ;
Eisen, Andrea ;
Wright, Frances ;
Look Hong, Nicole ;
Sahgal, Arjun ;
Stanisz, Greg ;
Brezden, Christine ;
Dinniwell, Robert ;
Tran, William T. ;
Yang, Wei ;
Curpen, Belinda ;
Czarnota, Gregory J. .
CANCER MEDICINE, 2020, 9 (16) :5798-5806
[7]   Triple-Negative Breast Cancer [J].
Foulkes, William D. ;
Smith, Ian E. ;
Reis-Filho, Jorge S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (20) :1938-1948
[8]   CD4+ follicular helper T cell infiltration predicts breast cancer survival [J].
Gu-Trantien, Chunyan ;
Loi, Sherene ;
Garaud, Soizic ;
Equeter, Carole ;
Libin, Myriam ;
de Wind, Alexandre ;
Ravoet, Marie ;
Le Buanec, Helene ;
Sibille, Catherine ;
Manfouo-Foutsop, Germain ;
Veys, Isabelle ;
Haibe-Kains, Benjamin ;
Singhal, Sandeep K. ;
Michiels, Stefan ;
Rothe, Francoise ;
Salgado, Roberto ;
Duvillier, Hugues ;
Ignatiadis, Michail ;
Desmedt, Christine ;
Bron, Dominique ;
Larsimont, Denis ;
Piccart, Martine ;
Sotiriou, Christos ;
Willard-Gallo, Karen .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (07) :2873-2892
[9]   Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer [J].
Huang, Yanqi ;
Liu, Zaiyi ;
He, Lan ;
Chen, Xin ;
Pan, Dan ;
Ma, Zelan ;
Liang, Cuishan ;
Tian, Jie ;
Liang, Changhong .
RADIOLOGY, 2016, 281 (03) :947-957
[10]   Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study [J].
Ji, Gu-Wei ;
Zhu, Fei-Peng ;
Xu, Qing ;
Wang, Ke ;
Wu, Ming-Yu ;
Tang, Wei-Wei ;
Li, Xiang-Cheng ;
Wang, Xue-Hao .
RADIOLOGY, 2020, 294 (03) :568-579