Robust Global Identification of LPV Errors-in-Variables Systems With Incomplete Observations

被引:15
作者
Liu, Xin [1 ]
Han, Guangjie [2 ]
Yang, Xianqiang [3 ]
机构
[1] Hohai Univ, Coll IoT Engn, Changzhou 213022, Peoples R China
[2] Hohai Univ, Dept Internet Things Engn, Changzhou 213022, Peoples R China
[3] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150080, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2022年 / 52卷 / 06期
关键词
Pollution measurement; Mathematical model; Data models; Robustness; Parameter estimation; Industries; Ear; Expectation-maximization (EM) algorithm; linear parameter varying (LPV) errors-in-variable (EIV) systems; particle filter; randomly missing observations; robust global approach; Student's t-distribution; NONLINEAR-SYSTEMS; BAYESIAN-APPROACH; STATE ESTIMATION; PARAMETER;
D O I
10.1109/TSMC.2021.3071137
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article develops a robust global strategy for identifying the linear parameter varying (LPV) errors-in-variables (EIVs) systems subjected to randomly missing observations and outliers. The parameter interpolated LPV autoregressive exogenous model with an uncertain/noisy input is investigated and a nonlinear state-space model is considered for the input generation model (IGM). The parameters estimation of the LPV EIV systems with nonideal observations is realized using the expectation-maximization algorithm which is particular effective for the incomplete data issue. To ensure the robustness in the identification, the Student's t-distribution which is characterized by its adjustable degree of freedom, is used to handle the measurement non-normality. Since the posterior distributions of the latent states in the IGM are also involved in the identification process and they are difficult to calculate directly, the particle filter is introduced to recursively approximate them instead. Finally, the verification examples are given to demonstrate the effectiveness of the developed strategy.
引用
收藏
页码:3799 / 3807
页数:9
相关论文
共 30 条
[1]   Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach-Part 1 [J].
Adeniran, Ahmed Adebowale ;
El Ferik, Sami .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (07) :1149-1159
[2]   Gaussian filters for parameter and state estimation: A general review of theory and recent trends [J].
Afshari, H. H. ;
Gadsden, S. A. ;
Habibi, S. .
SIGNAL PROCESSING, 2017, 135 :218-238
[3]   Vehicle sideslip estimation via kernel-based LPV identification: Theory and experiments [J].
Breschi, Valentina ;
Formentin, Simone ;
Rallo, Gianmarco ;
Corno, Matteo ;
Savaresi, Sergio M. .
AUTOMATICA, 2020, 122
[4]   Finite-Sample System Identification: An Overview and a New Correlation Method [J].
Care, Algo ;
Csaji, Balazs Cs ;
Campi, Marco C. ;
Weyer, Erik .
IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (01) :61-66
[5]   Variational Bayesian approach for ARX systems with missing observations and varying time-delays [J].
Chen, Jing ;
Huang, Biao ;
Ding, Feng ;
Gu, Ya .
AUTOMATICA, 2018, 94 :194-204
[6]   Prediction-error identification of LPV systems: A nonparametric Gaussian regression approach [J].
Darwish, Mohamed Abdelmonim Hassan ;
Cox, Pepijn Bastiaan ;
Proimadis, Ioannis ;
Pillonetto, Gianluigi ;
Toth, Roland .
AUTOMATICA, 2018, 97 :92-103
[7]   Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach-Part 2 [J].
El Ferik, Sami ;
Adeniran, Ahmed A. .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (07) :1160-1168
[8]   Mixtures of Shifted Asymmetric Laplace Distributions [J].
Franczak, Brian C. ;
Browne, Ryan P. ;
McNicholas, Paul D. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (06) :1149-1157
[9]   Predictor-Based Tensor Regression (PBTR) for LPV subspace identification [J].
Gunes, Bilal ;
van Wingerden, Jan-Willem ;
Verhaegen, Michel .
AUTOMATICA, 2017, 79 :235-243
[10]   Robust identification for nonlinear errors-in-variables systems using the EM algorithm [J].
Guo, F. ;
Hariprasad, K. ;
Huang, B. ;
Ding, Y. S. .
JOURNAL OF PROCESS CONTROL, 2017, 54 :129-137