A Unified Multiview Spectral Feature Learning Framework for Hyperspectral Image Classification

被引:5
作者
Li, Xian [1 ]
Gu, Yanfeng [1 ]
Pizurica, Aleksandra [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Univ Ghent, Dept Telecommun & Informat Proc, UGent GAIM, B-9000 Ghent, Belgium
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Feature extraction; Representation learning; Deep learning; Training; Three-dimensional displays; Testing; Hyperspectral imaging; Attention mechanism; deep learning; hyperspectral image (HSI) classification; multiview spectrum; GRAPH CONVOLUTIONAL NETWORKS; MARKOV-RANDOM-FIELDS; FEATURE-EXTRACTION;
D O I
10.1109/TGRS.2022.3213838
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent progress in spectral classification is dominated by the use of deep learning models. While various learning architectures have been developed, they all extract spectral features from a single-view input. In this article, we investigate a different perspective and develop a unified multiview spectral feature learning framework, which extracts discriminative spectral features from multiple views of inputs. To our knowledge, this is the first reported multiview spectral feature learning method based on deep learning. In this framework, we introduce a multiview spectrum construction method by transforming the input spectral vector into multiple 3-D image patches with different sizes, termed multiview spectrum. This multiview spectrum is fed to a well-designed triple-stream architecture, where global and two local spectral feature learning networks operate in parallel, thus capturing both global and local spectral contextual features simultaneously. Another important contribution of this work is a novel interactive attention mechanism to identify the most informative spectral contextual features. The model is trained in an end-to-end fashion from scratch with a joint loss. Experimental results on four datasets demonstrate excellent performance compared to the current state of the art.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spectral Feature Fusion Networks With Dual Attention for Hyperspectral Image Classification
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Multiview Spatial-Spectral Active Learning for Hyperspectral Image Classification
    Xu, Meng
    Zhao, Qingqing
    Jia, Sen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] A Multiview Spectral-Spatial Feature Extraction and Fusion Framework for Hyperspectral Image Classification
    Feng, Jia
    Zhang, Junping
    Zhang, Ye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Deep Multiview Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Anzhu
    Yu, Xuchu
    Wang, Ruirui
    Gao, Kuiliang
    Guo, Wenyue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7758 - 7772
  • [5] A Unified Multiscale Learning Framework for Hyperspectral Image Classification
    Wang, Xue
    Tan, Kun
    Du, Peijun
    Pan, Chen
    Ding, Jianwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Unsupervised Spectral-Spatial Semantic Feature Learning for Hyperspectral Image Classification
    Xu, Huilin
    He, Wei
    Zhang, Liangpei
    Zhang, Hongyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Unsupervised Multiview Graph Contrastive Feature Learning for Hyperspectral Image Classification
    Chang, Yuan
    Liu, Quanwei
    Zhang, Yuxiang
    Dong, Yanni
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [8] Semisupervised Spatial-Spectral Feature Extraction With Attention Mechanism for Hyperspectral Image Classification
    Pu, Chunyu
    Huang, Hong
    Shi, Xu
    Wang, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] A Spectral-Spatial-Dependent Global Learning Framework for Insufficient and Imbalanced Hyperspectral Image Classification
    Zhu, Qiqi
    Deng, Weihuan
    Zheng, Zhuo
    Zhong, Yanfei
    Guan, Qingfeng
    Lin, Weihua
    Zhang, Liangpei
    Li, Deren
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 11709 - 11723
  • [10] Multitask Deep Learning With Spectral Knowledge for Hyperspectral Image Classification
    Liu, Shengjie
    Shi, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (12) : 2110 - 2114