Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores

被引:859
作者
Knoben, Wouter J. M. [1 ,4 ]
Freer, Jim E. [2 ,3 ]
Woods, Ross A. [1 ,3 ]
机构
[1] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, Avon, England
[2] Univ Bristol, Sch Geog Sci, Bristol BS8 1BF, Avon, England
[3] Univ Bristol, Cabot Inst, Bristol BS8 1UJ, Avon, England
[4] Univ Saskatchewan, Coldwater Lab, Canmore, AB, Canada
基金
英国工程与自然科学研究理事会;
关键词
CALIBRATION; UNCERTAINTY; PERFORMANCE; RUNOFF; MODELS; SYSTEM;
D O I
10.5194/hess-23-4323-2019
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
A traditional metric used in hydrology to summarize model performance is the Nash-Sutcliffe efficiency (NSE). Increasingly an alternative metric, the Kling-Gupta efficiency (KGE), is used instead. When NSE is used, NSE = 0 corresponds to using the mean flow as a benchmark predictor. The same reasoning is applied in various studies that use KGE as a metric: negative KGE values are viewed as bad model performance, and only positive values are seen as good model performance. Here we show that using the mean flow as a predictor does not result in KGE = 0, but instead KGE = 1 - root 2 approximate to -0.41. Thus, KGE values greater than -0.41 indicate that a model improves upon the mean flow benchmark - even if the model's KGE value is negative. NSE and KGE values cannot be directly compared, because their relationship is non-unique and depends in part on the coefficient of variation of the observed time series. Therefore, modellers who use the KGE metric should not let their understanding of NSE values guide them in interpreting KGE values and instead develop new understanding based on the constitutive parts of the KGE metric and the explicit use of benchmark values to compare KGE scores against. More generally, a strong case can be made for moving away from ad hoc use of aggregated efficiency metrics and towards a framework based on purpose-dependent evaluation metrics and benchmarks that allows for more robust model adequacy assessment.
引用
收藏
页码:4323 / 4331
页数:9
相关论文
共 31 条
[11]   Reconciling theory with observations: elements of a diagnostic approach to model evaluation [J].
Gupta, Hoshin V. ;
Wagener, Thorsten ;
Liu, Yuqiong .
HYDROLOGICAL PROCESSES, 2008, 22 (18) :3802-3813
[12]   Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling [J].
Gupta, Hoshin V. ;
Kling, Harald ;
Yilmaz, Koray K. ;
Martinez, Guillermo F. .
JOURNAL OF HYDROLOGY, 2009, 377 (1-2) :80-91
[13]   Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information [J].
Gupta, HV ;
Sorooshian, S ;
Yapo, PO .
WATER RESOURCES RESEARCH, 1998, 34 (04) :751-763
[14]   Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data [J].
Hirpa, Feyera A. ;
Salamon, Peter ;
Beck, Hylke E. ;
Lorini, Valerio ;
Alfieri, Lorenzo ;
Zsoter, Ervin ;
Dadson, Simon J. .
JOURNAL OF HYDROLOGY, 2018, 566 :595-606
[15]   Monte Carlo-based calibration and uncertainty analysis of a coupled plant growth and hydrological model [J].
Houska, T. ;
Multsch, S. ;
Kraft, P. ;
Frede, H. -G. ;
Breuer, L. .
BIOGEOSCIENCES, 2014, 11 (07) :2069-2082
[16]   Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios [J].
Kling, Harald ;
Fuchs, Martin ;
Paulin, Maria .
JOURNAL OF HYDROLOGY, 2012, 424 :264-277
[17]   A Quantitative Hydrological Climate Classification Evaluated With Independent Streamflow Data [J].
Knoben, Wouter J. M. ;
Woods, Ross A. ;
Freer, Jim E. .
WATER RESOURCES RESEARCH, 2018, 54 (07) :5088-5109
[18]   Restoration of nutrient-rich forestry-drained peatlands poses a risk for high exports of dissolved organic carbon, nitrogen, and phosphorus [J].
Koskinen, Markku ;
Tahvanainen, Teemu ;
Sarkkola, Sakari ;
Menberu, Meseret Walle ;
Lauren, Ari ;
Sallantaus, Tapani ;
Marttila, Hannu ;
Ronkanen, Anna-Kaisa ;
Parviainen, Miia ;
Tolvanen, Anne ;
Koivusalo, Harri ;
Nieminen, Mika .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 586 :858-869
[19]   On the choice of calibration metrics for "high-flow" estimation using hydrologic models [J].
Mizukami, Naoki ;
Rakovec, Oldrich ;
Newman, Andrew J. ;
Clark, Martyn P. ;
Wood, Andrew W. ;
Gupta, Hoshin V. ;
Kumar, Rohini .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2019, 23 (06) :2601-2614
[20]   Model evaluation guidelines for systematic quantification of accuracy in watershed simulations [J].
Moriasi, D. N. ;
Arnold, J. G. ;
Van Liew, M. W. ;
Bingner, R. L. ;
Harmel, R. D. ;
Veith, T. L. .
TRANSACTIONS OF THE ASABE, 2007, 50 (03) :885-900