Salient Object Detection Based on Multiscale Segmentation and Fuzzy Broad Learning

被引:3
作者
Lin, Xiao [1 ]
Wang, Zhi-Jie [2 ]
Ma, Lizhuang [3 ]
Li, Renjie [1 ]
Fang, Mei-E [4 ]
机构
[1] Shanghai Normal Univ, Dept Comp Sci & Engn, Shanghai 201418, Peoples R China
[2] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[4] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou 510006, Peoples R China
基金
国家重点研发计划;
关键词
saliency detection; computer vision; image processing; machine learning; REGION DETECTION; VISUAL SALIENCY; RANKING; SYSTEMS; MODEL;
D O I
10.1093/comjnl/bxaa158
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Saliency detection has been a hot topic in the field of computer vision. In this paper, we propose a novel approach that is based on multiscale segmentation and fuzzy broad learning. The core idea of our method is to segment the image into different scales, and then the extracted features are fed to the fuzzy broad learning system (FBLS) for training. More specifically, it first segments the image into superpixel blocks at different scales based on the simple linear iterative clustering algorithm. Then, it uses the local binary pattern algorithm to extract texture features and computes the average color information for each superpixel of these segmentation images. These extracted features are then fed to the FBLS to obtain multiscale saliency maps. After that, it fuses these saliency maps into an initial saliency map and uses the label propagation algorithm to further optimize it, obtaining the final saliency map. We have conducted experiments based on several benchmark datasets. The results show that our solution can outperform several existing algorithms. Particularly, our method is significantly faster than most of deep learning-based saliency detection algorithms, in terms of training and inferring time.
引用
收藏
页码:1006 / 1019
页数:14
相关论文
共 56 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2010.70
[3]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[4]   HitFraud: A Broad Learning Approach for Collective Fraud Detection in Heterogeneous Information Networks [J].
Cao, Bokai ;
Mao, Mia ;
Viidu, Siim ;
Yu, Philip S. .
2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2017, :769-774
[5]   Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture [J].
Chen, C. L. Philip ;
Liu, Zhulin .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (01) :10-24
[6]   Attention to Scale: Scale-aware Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Yang, Yi ;
Wang, Jiang ;
Xu, Wei ;
Yuille, Alan L. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3640-3649
[7]   Efficient Salient Region Detection with Soft Image Abstraction [J].
Cheng, Ming-Ming ;
Warrell, Jonathan ;
Lin, Wen-Yan ;
Zheng, Shuai ;
Vineet, Vibhav ;
Crook, Nigel .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1529-1536
[8]   Global Contrast based Salient Region Detection [J].
Cheng, Ming-Ming ;
Zhang, Guo-Xin ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, :409-416
[9]   The Influence of Object Shape on the Convergence of Active Contour Models for Image Segmentation [J].
Chopin, Josh ;
Laga, Hamid ;
Miklavcic, Stanley J. .
COMPUTER JOURNAL, 2016, 59 (05) :603-615
[10]   Visual Saliency Prediction Using a Mixture of Deep Neural Networks [J].
Dodge, Samuel F. ;
Karam, Lina J. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) :4080-4090