Non-asymptotic error bounds for constant stepsize stochastic approximation for tracking mobile agents

被引:2
|
作者
Kumar, Bhumesh [1 ,2 ]
Borkar, Vivek [1 ]
Shetty, Akhil [1 ,3 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, Maharashtra, India
[2] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Cory Hall,Hearst Ave, Berkeley, CA 94720 USA
关键词
Stochastic approximation; Constant stepsize; Non-asymptotic bound; Alekseev's formula; Martingale concentration inequalities; Perturbation analysis; Non-stationary optimization; EXPONENTIAL STABILITY; ASYMPTOTIC ANALYSIS; ALGORITHMS; SYSTEMS; CONVERGENCE; SIZE;
D O I
10.1007/s00498-019-00249-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work revisits the constant stepsize stochastic approximation algorithm for tracking a slowly moving target and obtains a bound for the tracking error that is valid for the entire time axis, using the Alekseev nonlinear variation of constants formula. It is the first non-asymptotic bound for the entire time axis in the sense that it is not based on the vanishing stepsize limit and associated limit theorems unlike prior works, and captures clearly the dependence on problem parameters and the dimension.
引用
收藏
页码:589 / 614
页数:26
相关论文
共 23 条
  • [21] Finite-Time Error Bounds of Biased Stochastic Approximation With Application to TD-Learning
    Wang, Gang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 950 - 962
  • [22] LOWER ERROR BOUNDS FOR STRONG APPROXIMATION OF SCALAR SDES WITH NON-LIPSCHITZIAN COEFFICIENTS
    Hefter, Mario
    Herzwurm, Andre
    Mueller-Gronbach, Thomas
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (01) : 178 - 216
  • [23] Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction
    Hampton, Jerrad
    Fairbanks, Hillary R.
    Narayan, Akil
    Doostan, Alireza
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 368 : 315 - 332