Trigonal curves and algebro-geometric solutions to soliton hierarchies II

被引:35
作者
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, ZA-2735 Mmabatho, South Africa
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2017年 / 473卷 / 2203期
基金
中国国家自然科学基金;
关键词
trigonal curve; Baker-Akhiezer function; algebro-geometric solution;
D O I
10.1098/rspa.2017.0233
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel-Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function representations of the Baker-Akhiezer functions, and generate algebro-geometric solutions to soliton hierarchies in terms of the Riemann theta functions, through observing asymptotic behaviours of the Baker-Akhiezer functions. We emphasize that we analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy.
引用
收藏
页数:20
相关论文
共 22 条
[1]  
Belokolos E. D., 1994, Algebro-geometric approach to nonlinear integrable equations
[2]   Algebro-geometric solutions of the Boussinesq hierarchy [J].
Dickson, R ;
Gesztesy, F ;
Unterkofler, K .
REVIEWS IN MATHEMATICAL PHYSICS, 1999, 11 (07) :823-879
[3]   A new 4-dimensional implicit vector-form loop algebra with arbitrary constants and the corresponding computing formula of constant γ in the Variation identity [J].
Dong, Huanhe ;
Wang, Xiangrong ;
Zhao, Wencai .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) :10998-11008
[4]   THETA FUNCTIONS AND NON-LINEAR EQUATIONS [J].
DUBROVIN, BA .
RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) :11-92
[5]  
Farkas H.M., 1992, Riemann Surfaces, Vsecond
[6]   Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy [J].
Geng, Xianguo ;
Zhai, Yunyun ;
Dai, H. H. .
ADVANCES IN MATHEMATICS, 2014, 263 :123-153
[7]   Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions [J].
Geng, Xianguo ;
Wu, Lihua ;
He, Guoliang .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (16) :1262-1288
[8]  
Griffiths P., 1978, Principles of algebraic geometry
[9]   WEIERSTRASS GAP SEQUENCES AT THE RAMIFICATION POINTS OF TRIGONAL RIEMANN SURFACES [J].
KATO, T ;
HORIUCHI, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1988, 50 (03) :271-285
[10]  
Ma WX, 2017, P ROY SOC A-MATH PHY, V473, DOI 10.1098/rspa.2017.0232