Dealing with missing data: Part II

被引:70
作者
Walczak, B [1 ]
Massart, DL [1 ]
机构
[1] Fabi VUB, ChemoAC, B-1090 Brussels, Belgium
关键词
maximum likelihood; multiple imputation; missing data;
D O I
10.1016/S0169-7439(01)00132-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main concepts of the maximum likelihood (ML) approach in dealing with missing data are introduced and simple numerical examples of the application of ML are presented. Differences between ML and other techniques of treating missing data are illustrated. The idea of multiple imputation (MI) approach is presented and illustrated as well. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 25 条
[1]   MISSING OBSERVATIONS IN MULTIVARIATE STATISTICS .3. LARGE SAMPLE ANALYSIS OF SIMPLE LINEAR REGRESSION [J].
AFIFI, AA ;
ELASHOFF, RM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1969, 64 (325) :337-&
[2]  
[Anonymous], 1985, Computational Statistics Quarterly, DOI DOI 10.1155/2010/874592
[3]  
Broniatowski M., 1983, DATA ANAL INFORMATIC, V3, P359
[4]   EXPLAINING THE GIBBS SAMPLER [J].
CASELLA, G ;
GEORGE, EI .
AMERICAN STATISTICIAN, 1992, 46 (03) :167-174
[5]   MONTE-CARLO EM ESTIMATION FOR TIME-SERIES MODELS INVOLVING COUNTS [J].
CHAN, KS ;
LEDOLTER, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :242-252
[6]  
CLIFFORD P, 1993, J ROY STAT SOC B, V55, P53
[8]  
Cohen AC, 1959, J AM STAT ASSOC, V1, P217
[9]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[10]   Theory of statistical estimation. [J].
Fisher, RA .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 :700-725