Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.)

被引:15
|
作者
Zhao, Jiajia [1 ,2 ]
Zheng, Xingwei [1 ]
Qiao, Ling [1 ]
Yang, Chenkang [1 ]
Wu, Bangbang [1 ]
He, Ziming [2 ]
Tang, Yuqing [2 ]
Li, Guangrong [3 ]
Yang, Zujun [3 ]
Zheng, Jun [1 ]
Qi, Zengjun [2 ]
机构
[1] Shanxi Agr Univ, Inst Wheat Res, State Key Lab Sustainable Dryland Agr, Linfen 041000, Peoples R China
[2] Nanjing Agr Univ, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Peoples R China
[3] Univ Elect & Technol China, Ctr Informat Biol, Sch Life Sci & Technol, Chengdu 611731, Peoples R China
关键词
wheat; structural chromosome variations; fluorescence in situ hybridization; genome wide association study; phenotypic effects; COPY NUMBER VARIATION; REARRANGEMENTS; GENE; WILD; DOMESTICATION; RESISTANCE; TOLERANCE; INVERSION; SELECTION; VARIANT;
D O I
10.1111/tpj.16023
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS center dot 4AL-1DS/1DL center dot 1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.
引用
收藏
页码:1447 / 1461
页数:15
相关论文
共 50 条
  • [31] Genome-Wide Identification and Characterization of the OPR Gene Family in Wheat (Triticum aestivum L.)
    Mou, Yifei
    Liu, Yuanyuan
    Tian, Shujun
    Guo, Qiping
    Wang, Chengshe
    Wen, Shanshan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (08)
  • [32] Genetic dissection of flour whiteness through genome-wide association analysis in common wheat ( Triticum aestivum L.)
    Hou, Jinna
    Deng, Hui
    Xu, Fuxin
    Geng, Shenghui
    Liu, Congcong
    Li, Wenxu
    Shi, Xia
    Wu, Zhengqing
    Lei, Zhensheng
    Zhou, Zhengfu
    CURRENT PLANT BIOLOGY, 2024, 40
  • [33] Genome-Wide Analysis and Evolutionary Perspective of the Cytokinin Dehydrogenase Gene Family in Wheat (Triticum aestivum L.)
    Jain, Priyanka
    Singh, Ankita
    Iquebal, Mir Asif
    Jaiswal, Sarika
    Kumar, Sundeep
    Kumar, Dinesh
    Rai, Anil
    FRONTIERS IN GENETICS, 2022, 13
  • [34] Genome-Wide Identification and Analysis of GHMP Kinase Gene Superfamily in Bread Wheat (Triticum aestivum L.)
    Thakur, Neha
    Flowerika
    Singh, Pankaj K.
    Kaur, Karambir
    Tiwari, Siddharth
    PLANT MOLECULAR BIOLOGY REPORTER, 2021, 39 (02) : 455 - 470
  • [35] Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum aestivum L.)
    Yue, Wenjie
    Nie, Xiaojun
    Cui, Licao
    Zhi, Yongqiang
    Zhang, Ting
    Du, Xianghong
    Song, Weining
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 229 : 7 - 21
  • [36] Genome-wide identification and expression analysis of the regulator of chromosome condensation 1 gene family in wheat (Triticum aestivum L.)
    An, Xia
    Zhao, Shuqi
    Luo, Xiahong
    Chen, Changli
    Liu, Tingting
    Li, Wenlue
    Zou, Lina
    Sun, Chendong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [37] Genome-wide association study for seedling heat tolerance under two temperature conditions in bread wheat (Triticum aestivum L.)
    Fu, Chao
    Zhou, Ying
    Liu, Ankui
    Chen, Rui
    Yin, Li
    Li, Cong
    Mao, Hailiang
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [38] Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis
    Jung, Woo Joo
    Lee, Yong Jin
    Kang, Chon-Sik
    Seo, Yong Weon
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [39] Genome-Wide Association Study for Grain Protein, Thousand Kernel Weight, and Normalized Difference Vegetation Index in Bread Wheat (Triticum aestivum L.)
    Krishnappa, Gopalareddy
    Khan, Hanif
    Krishna, Hari
    Devate, Narayana Bhat
    Kumar, Satish
    Mishra, Chandra Nath
    Parkash, Om
    Kumar, Sachin
    Kumar, Monu
    Mamrutha, Harohalli Masthigowda
    Singh, Gyanendra Pratap
    Singh, Gyanendra
    GENES, 2023, 14 (03)
  • [40] Genome-wide analysis of bHLH transcription factor family reveals their involvement in biotic and abiotic stress responses in wheat (Triticum aestivum L.)
    Wang, Lianzhe
    Xiang, Lijun
    Hong, Jun
    Xie, Zhaohui
    Li, Bingbing
    3 BIOTECH, 2019, 9 (06)