3,5-Difluorophenylboronic acid-modified SnO2 as ETLs for perovskite solar cells: PCE > 22.3%, T82 > 3000 h

被引:34
作者
Zhang, Jiajia [1 ]
Fu, Jianfei [1 ]
Chen, Qiaoyun [1 ]
Ma, Hui [1 ]
Jiang, Zhixuan [1 ]
Zhang, Zelong [1 ]
Zhou, Yi [1 ]
Song, Bo [1 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou Key Lab Novel Semicond Optoelect Mat & Dev, Lab Adv Optoelect Mat, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; 3,5-Difluorophenylboronic acid; SnO2; Electron transport layer; EFFICIENT; ELECTRON; LAYER; PERFORMANCE;
D O I
10.1016/j.cej.2021.133744
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
SnO2 has recently emerged as a promising Electron transportation layer (ETL) for perovskite solar cells (PeroSCs). However, its inherent trap-states usually cause charge recombination, and its conductive band does not match well with that of the perovskite film. In order to solve these problems, we herein employed 3,5-Difluorophenylboronic acid (denoted by FPBA) to modify SnO2. After modification, the trap state density of SnO2 is drastically reduced, and better energy-level alignment is formed with perovskite owing to the interfacial dipole of FPBA. Consequently, the champion Power conversion efficiency (PCE) of Pero-SCs is increased from 20.38% to 22.36% after SnO2 being modified with FPBA. Moreover, the unencapsulated device based on FPBA-modified SnO2 maintains 82% of the initial PCE after being stored in nitrogen atmosphere for more than 3000 h.
引用
收藏
页数:10
相关论文
共 59 条
[1]   Trapped charge-driven degradation of perovskite solar cells [J].
Ahn, Namyoung ;
Kwak, Kwisung ;
Jang, Min Seok ;
Yoon, Heetae ;
Lee, Byung Yang ;
Lee, Jong-Kwon ;
Pikhitsa, Peter V. ;
Byun, Junseop ;
Choi, Mansoo .
NATURE COMMUNICATIONS, 2016, 7
[2]   New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells [J].
Akin, Seckin ;
Arora, Neha ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael ;
Friend, Richard H. ;
Dar, M. Ibrahim .
ADVANCED ENERGY MATERIALS, 2020, 10 (13)
[4]   Poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine-Based Interfacial Passivation Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture [J].
Akman, Erdi ;
Akin, Seckin .
ADVANCED MATERIALS, 2021, 33 (02)
[5]   Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells [J].
Bi, Cheng ;
Wang, Qi ;
Shao, Yuchuan ;
Yuan, Yongbo ;
Xiao, Zhengguo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2015, 6
[6]   Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells [J].
Bu, Tongle ;
Wu, Lan ;
Liu, Xueping ;
Yang, Xiaokun ;
Zhou, Peng ;
Yu, Xinxin ;
Qin, Tianshi ;
Shi, Jiangjian ;
Wang, Song ;
Li, Saisai ;
Ku, Zhiliang ;
Peng, Yong ;
Huang, Fuzhi ;
Meng, Qingbo ;
Cheng, Yi-Bing ;
Zhong, Jie .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[7]   Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Zhao, Xing ;
Kim, Seul-Gi ;
Park, Nam-Gyu .
ADVANCED MATERIALS, 2019, 31 (39)
[8]   Interfacial Dipole in Organic and Perovskite Solar Cells [J].
Chen, Qi ;
Wang, Cheng ;
Li, Yaowen ;
Chen, Liwei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (43) :18281-18292
[9]   Zwitterionic Polymer: A Facile Interfacial Material Works at Both Anode and Cathode in p-i-n Perovskite Solar Cells [J].
Chen, Qiaoyun ;
Yuan, Ligang ;
Duan, Ruomeng ;
Huang, Peng ;
Fu, Jianfei ;
Ma, Hui ;
Wang, Xiaocheng ;
Zhou, Yi ;
Song, Bo .
SOLAR RRL, 2019, 3 (09)
[10]   Thermally stable, planar hybrid perovskite solar cells with high efficiency [J].
Choi, Kyoungwon ;
Lee, Junwoo ;
Kim, Hong Il ;
Park, Cheol Woong ;
Kim, Guan-Woo ;
Choi, Hyuntae ;
Park, Sungjin ;
Park, Sang Ah ;
Park, Taiho .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3238-3247