Bayesian emulation and history matching of JUNE

被引:8
|
作者
Vernon, I. [1 ,2 ]
Owen, J. [1 ,2 ]
Aylett-Bullock, J. [1 ,3 ]
Cuesta-Lazaro, C. [1 ,4 ]
Frawley, J. [1 ,5 ]
Quera-Bofarull, A. [1 ,4 ]
Sedgewick, A. [1 ,6 ]
Shi, D. [1 ,4 ]
Truong, H. [1 ,3 ]
Turner, M. [1 ,5 ]
Walker, J. [1 ,3 ]
Caulfield, T. [7 ]
Fong, K. [8 ,9 ]
Krauss, F. [1 ,3 ]
机构
[1] Univ Durham, Inst Data Sci, Durham DH13LE, England
[2] Univ Durham, Dept Math Sci, Durham DH13LE, England
[3] Univ Durham, Inst Particle Phys Phenomenol, Durham DH13LE, England
[4] Univ Durham, Inst Computat Cosmol, Durham DH13LE, England
[5] Univ Durham, Adv Res Comp, Durham DH13LE, England
[6] Univ Durham, Ctr Extragalact Astron, Durham DH13LE, England
[7] Univ Durham, Dept Comp Sci, Durham DH13LE, England
[8] UCL, Dept Sci Technol Engn & Publ Policy, London WC1E6BT, England
[9] Univ Coll London Hosp, Dept Anaesthesia, London NW12BU, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2022年 / 380卷 / 2233期
基金
英国惠康基金;
关键词
disease models; Bayes linear; emulation; calibration; history matching; GALAXY FORMATION; COMPUTER CODE; INFERENCE; PREDICTION; DESIGN;
D O I
10.1098/rsta.2022.0039
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze JUNE: a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods.This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Identifying and removing structural biases in climate models with history matching
    Williamson, Daniel
    Blaker, Adam T.
    Hampton, Charlotte
    Salter, James
    CLIMATE DYNAMICS, 2015, 45 (5-6) : 1299 - 1324
  • [42] Exploring the potential of history matching for land surface model calibration
    Raoult, Nina
    Beylat, Simon
    Salter, James M.
    Hourdin, Frederic
    Bastrikov, Vladislav
    Ottle, Catherine
    Peylin, Philippe
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (15) : 5779 - 5801
  • [43] Calibration of facies proportions through a history-matching process
    Ponsot-Jacquin, Catherine
    Roggero, Frederic
    Enchery, Guillaume
    BULLETIN DE LA SOCIETE GEOLOGIQUE DE FRANCE, 2009, 180 (05): : 387 - 397
  • [44] Bayesian functional emulation of CO2 emissions on future climate change scenarios
    Aiello, Luca
    Fontana, Matteo
    Guglielmi, Alessandra
    ENVIRONMETRICS, 2023, 34 (08)
  • [45] Bayesian Emulation and Calibration of a Dynamic Epidemic Model for A/H1N1 Influenza
    Farah, Marian
    Birrell, Paul
    Conti, Stefano
    De Angelis, Daniela
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1398 - 1411
  • [46] Calibration and sensitivity analysis of long-term generation investment models using Bayesian emulation
    Xu, M.
    Wilson, A.
    Dent, C. J.
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2016, 5 : 58 - 69
  • [47] Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation
    Overstall, Antony
    McGree, James
    BAYESIAN ANALYSIS, 2020, 15 (01): : 103 - 131
  • [48] A continuous learning algorithm for history matching
    Cavalcante, Cristina C. B.
    Maschio, Celio
    Santos, Antonio Alberto S.
    Schiozer, Denis
    Rocha, Anderson
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 543 - 568
  • [49] Regional probability perturbations for history matching
    Hoffman, BT
    Caers, J
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2005, 46 (1-2) : 53 - 71
  • [50] Genetic Algorithm for the History Matching Problem
    Xavier, Carolina Ribeiro
    dos Santos, Elisa Portes
    Vieira, Vincius da Fonseca
    dos Santos, Rodrigo Weber
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 946 - 955