Bayesian emulation and history matching of JUNE

被引:8
|
作者
Vernon, I. [1 ,2 ]
Owen, J. [1 ,2 ]
Aylett-Bullock, J. [1 ,3 ]
Cuesta-Lazaro, C. [1 ,4 ]
Frawley, J. [1 ,5 ]
Quera-Bofarull, A. [1 ,4 ]
Sedgewick, A. [1 ,6 ]
Shi, D. [1 ,4 ]
Truong, H. [1 ,3 ]
Turner, M. [1 ,5 ]
Walker, J. [1 ,3 ]
Caulfield, T. [7 ]
Fong, K. [8 ,9 ]
Krauss, F. [1 ,3 ]
机构
[1] Univ Durham, Inst Data Sci, Durham DH13LE, England
[2] Univ Durham, Dept Math Sci, Durham DH13LE, England
[3] Univ Durham, Inst Particle Phys Phenomenol, Durham DH13LE, England
[4] Univ Durham, Inst Computat Cosmol, Durham DH13LE, England
[5] Univ Durham, Adv Res Comp, Durham DH13LE, England
[6] Univ Durham, Ctr Extragalact Astron, Durham DH13LE, England
[7] Univ Durham, Dept Comp Sci, Durham DH13LE, England
[8] UCL, Dept Sci Technol Engn & Publ Policy, London WC1E6BT, England
[9] Univ Coll London Hosp, Dept Anaesthesia, London NW12BU, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2022年 / 380卷 / 2233期
基金
英国惠康基金;
关键词
disease models; Bayes linear; emulation; calibration; history matching; GALAXY FORMATION; COMPUTER CODE; INFERENCE; PREDICTION; DESIGN;
D O I
10.1098/rsta.2022.0039
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We analyze JUNE: a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods.This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Bayesian Network - A New Probabilistic Method for Petroleum Reservoir Production Prediction and History Matching
    Khaz'ali, A. R.
    Farahani, F. J.
    Ahmadabadi, M. N.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2011, 29 (07) : 745 - 757
  • [22] Linking Remote Sensing with APSIM through Emulation and Bayesian Optimization to Improve Yield Prediction
    Dokoohaki, Hamze
    Rai, Teerath
    Kivi, Marissa
    Lewis, Philip
    Gomez-Dans, Jose L.
    Yin, Feng
    REMOTE SENSING, 2022, 14 (21)
  • [23] Using History Matching for Prior Choice
    Wang, Xueou
    Nott, David J.
    Drovandi, Christopher C.
    Mengersen, Kerrie
    Evans, Michael
    TECHNOMETRICS, 2018, 60 (04) : 445 - 460
  • [24] A new methodology for Bayesian history matching using parallel interacting Markov chain Monte Carlo
    Maschio, Celio
    Schiozer, Denis J.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2018, 26 (04) : 498 - 529
  • [25] Flexible Correlation Structure for Accurate Prediction and Uncertainty Quantification in Bayesian Gaussian Process Emulation of a Computer Model
    Chen, Hao
    Loeppky, Jason L.
    Welch, William J.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 598 - 620
  • [26] Accelerated Bayesian inference-based history matching of petroleum reservoirs using polynomial chaos expansions
    Khatoon, Sufia
    Phirani, Jyoti
    Bahga, Supreet Singh
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (13) : 3086 - 3116
  • [27] A history matching approach for calibrating hydrological models
    Natalia V. Bhattacharjee
    Pritam Ranjan
    Abhyuday Mandal
    Ernest W. Tollner
    Environmental and Ecological Statistics, 2019, 26 : 87 - 105
  • [28] A history matching approach for calibrating hydrological models
    Bhattacharjee, Natalia V.
    Ranjan, Pritam
    Mandal, Abhyuday
    Tollner, Ernest W.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2019, 26 (01) : 87 - 105
  • [29] 4D seismic history matching
    Oliver, Dean S.
    Fossum, Kristian
    Bhakta, Tuhin
    Sando, Ivar
    Naevdal, Geir
    Lorentzen, Rolf Johan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 207
  • [30] Bayesian emulation and calibration of an individual-based model of microbial communities
    Oyebamiji, O. K.
    Wilkinson, D. J.
    Li, B.
    Jayathilake, P. G.
    Zuliani, P.
    Curtis, T. P.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2019, 30 : 194 - 208