An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer

被引:60
作者
Liu, Xinzhi [1 ,2 ]
Wang, Yiqun [1 ]
Wang, Guiying [1 ]
Ma, Yifei [3 ]
Zheng, Zhihao [1 ,2 ]
Fan, Kuikui [1 ]
Liu, Junchen [4 ]
Zhou, Bingqian [1 ]
Wang, Gan [4 ]
You, Zheng [1 ]
Fang, Yin [4 ]
Wang, Xiaofeng [1 ]
Niu, Simiao [2 ]
机构
[1] Tsinghua Univ, Dept Precis Instruments, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
[2] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore, Singapore
关键词
PACEMAKER;
D O I
10.1016/j.matt.2022.08.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wireless power transfer can significantly extend the application range and service life of implantable medical devices, such as pacemakers, neurostimulators, and vascular applicators. However, existing transmission schemes are faced with shortcomings such as weak power, discontinuity, or impact on human health. Here, we design a subcutaneously implantable flexible ultrasound energy harvesting system that integrates a triboelectric nanogenerator (TENG) transducer and a power management circuit into a single flexible printed circuit board. We maximize the TENG transducer performance by choosing an attached-electrode TENG with optimized structural parameters, which offers 66% higher output power and lower impedance than the existing work. Such a flexible system shows broad applications in various environments. It can successfully provide a stable direct current voltage of 1.8 V with >1 mW continuous DC output power and >10 mW instantaneous power, which is sufficient to continuously drive various sensor systems, operate micromotors, and apply nerve stimulation.
引用
收藏
页码:4315 / 4331
页数:17
相关论文
共 53 条
[1]  
Ali Hina, 2016, BIOELECTROMAGNETICS, V47, P706, DOI [10.1002/jrs.4891, DOI 10.1002/BEM.20700]
[2]  
[Anonymous], 2019, C9512019 IEEE, P1, DOI DOI 10.1109/IEEESTD.2019.8859679
[3]  
[Anonymous], 2015, STANDARD TEST METHOD, DOI [DOI 10.1520/C0143_C0143M-20, 10.1016/j.scitotenv.2019.133628, DOI 10.1520/C0143]
[4]   A review of acoustic power transfer for biomedical implants [J].
Basaeri, Hamid ;
Christensen, David B. ;
Roundy, Shad .
SMART MATERIALS AND STRUCTURES, 2016, 25 (12)
[5]  
Center for Devices and Radiological Health F.D.A, 2019, MARK CLEAR DIAGN ULT
[6]   Staphylococcus aureus bacteremia in patients with permanent pacemakers or implantable cardioverter-defibrillators [J].
Chamis, AL ;
Peterson, GE ;
Cabell, CH ;
Corey, GR ;
Sorrentino, RA ;
Greenfield, RA ;
Ryan, T ;
Reller, LB ;
Fowler, VG .
CIRCULATION, 2001, 104 (09) :1029-1033
[7]   A mm-Sized Implantable Medical Device (IMD) With Ultrasonic Power Transfer and a Hybrid Bi-Directional Data Link [J].
Charthad, Jayant ;
Weber, Marcus J. ;
Chang, Ting Chia ;
Arbabian, Amin .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (08) :1741-1753
[8]   A Stretchable and Transparent Electrode Based on PEGylated Silk Fibroin for In Vivo Dual-Modal Neural-Vascular Activity Probing [J].
Cui, Yajing ;
Zhang, Fan ;
Chen, Geng ;
Yao, Lin ;
Zhang, Nan ;
Liu, Zhiyuan ;
Li, Qingsong ;
Zhang, Feilong ;
Cui, Zequn ;
Zhang, Keqin ;
Li, Peng ;
Cheng, Yuan ;
Zhang, Shaomin ;
Chen, Xiaodong .
ADVANCED MATERIALS, 2021, 33 (34)
[9]   Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm [J].
Dagdeviren, Canan ;
Yang, Byung Duk ;
Su, Yewang ;
Tran, Phat L. ;
Joe, Pauline ;
Anderson, Eric ;
Xia, Jing ;
Doraiswamy, Vijay ;
Dehdashti, Behrooz ;
Feng, Xue ;
Lu, Bingwei ;
Poston, Robert ;
Khalpey, Zain ;
Ghaffari, Roozbeh ;
Huang, Yonggang ;
Slepian, Marvin J. ;
Rogers, John A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (05) :1927-1932
[10]   A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices [J].
Dinis, H. ;
Mendes, P. M. .
BIOSENSORS & BIOELECTRONICS, 2021, 172