Where's the Rock: Using Convolutional Neural Networks to Improve Land Cover Classification

被引:9
|
作者
Petliak, Helen [1 ]
Cerovski-Darriau, Corina [2 ]
Zaliva, Vadim [3 ]
Stock, Jonathan [2 ]
机构
[1] Digamma Ai, 14500 Big Basin Way,Suite G, Saratoga Springs, NY 95070 USA
[2] US Geol Survey, Menlo Pk, CA 94025 USA
[3] Carnegie Mellon Univ, NASA Res Pk, Moffett Field, CA 94035 USA
关键词
remote sensing; environment; geology; land cover; land use; classification; SPECTRAL MIXTURE ANALYSIS; SUPERVISED CLASSIFICATION; FOREST; MACHINE; MODELS; IMAGES;
D O I
10.3390/rs11192211
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
While machine learning techniques have been increasingly applied to land cover classification problems, these techniques have not focused on separating exposed bare rock from soil covered areas. Therefore, we built a convolutional neural network (CNN) to differentiate exposed bare rock (rock) from soil cover (other). We made a training dataset by mapping exposed rock at eight test sites across the Sierra Nevada Mountains (California, USA) using USDA's 0.6 m National Aerial Inventory Program (NAIP) orthoimagery. These areas were then used to train and test the CNN. The resulting machine learning approach classifies bare rock in NAIP orthoimagery with a 0.95 <mml:semantics>F1</mml:semantics> score. Comparatively, the classical OBIA approach gives only a 0.84 <mml:semantics>F1</mml:semantics> score. This is an improvement over existing land cover maps, which underestimate rock by almost 90%. The resulting CNN approach is likely scalable but dependent on high-quality imagery and high-performance algorithms using representative training sets informed by expert mapping. As image quality and quantity continue to increase globally, machine learning models that incorporate high-quality training data informed by geologic, topographic, or other topical maps may be applied to more effectively identify exposed rock in large image collections.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks
    Carranza-Garcia, Manuel
    Garcia-Gutierrez, Jorge
    Riquelme, Jose C.
    REMOTE SENSING, 2019, 11 (03)
  • [2] Multilabel land cover aerial image classification using convolutional neural networks
    Kareem R.S.A.
    Ramanjineyulu A.G.
    Rajan R.
    Setiawan R.
    Sharma D.K.
    Gupta M.K.
    Joshi H.
    Kumar A.
    Harikrishnan H.
    Sengan S.
    Arabian Journal of Geosciences, 2021, 14 (17)
  • [3] Urban Land Cover Classification With Missing Data Modalities Using Deep Convolutional Neural Networks
    Kampffmeyer, Michael
    Salberg, Arnt-Borre
    Jenssen, Robert
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (06) : 1758 - 1768
  • [4] URBAN LAND COVER CLASSIFICATION WITH MISSING DATA USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Kampffmeyer, Michael
    Salberg, Arnt-Borre
    Jenssen, Robert
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5161 - 5164
  • [5] Sparse Pixel Training of Convolutional Neural Networks for Land Cover Classification
    Laban, Noureldin
    Abdellatif, Bassam
    Ebeid, Hala M.
    Shedeed, Howida A.
    Tolba, Mohamed F.
    IEEE ACCESS, 2021, 9 : 52067 - 52078
  • [6] Deep learning for the prediction and classification of land use and land cover changes using deep convolutional neural network
    Jagannathan, J.
    Divya, C.
    ECOLOGICAL INFORMATICS, 2021, 65
  • [7] Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks
    Al-Najjar, Husam A. H.
    Kalantar, Bahareh
    Pradhan, Biswajeet
    Saeidi, Vahideh
    Halin, Alfian Abdul
    Ueda, Naonori
    Mansor, Shattri
    REMOTE SENSING, 2019, 11 (12)
  • [8] A Deep Neural Networks Approach for Augmenting Samples of Land Cover Classification
    Zhao, Chuanpeng
    Huang, Yaohuan
    LAND, 2020, 9 (08)
  • [9] Land Cover Mapping with Convolutional Neural Networks Using Sentinel-2 Images: Case Study of Rome
    Cecili, Giulia
    De Fioravante, Paolo
    Dichicco, Pasquale
    Congedo, Luca
    Marchetti, Marco
    Munafo, Michele
    LAND, 2023, 12 (04)
  • [10] Deep convolutional neural networks for land-cover classification with Sentinel-2 images
    Kroupi, Eleni
    Kesa, Maria
    Diego Navarro-Sanchez, Victor
    Saeed, Salman
    Pelloquin, Camille
    Alhaddad, Bahaa
    Moreno, Laura
    Soria-Frisch, Aureli
    Ruffini, Giulio
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02)