Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers (vol 6, 134, 2021)

被引:4
|
作者
Sliepen, Kwinten
Schermer, Edith
Bontjer, Ilja
Burger, Judith A.
Levai, Reka Felfodine
Mundsperger, Philipp
Brouwer, Philip J. M.
Tolazzi, Monica
Farsang, Attila
Katinger, Dietmar
Moore, John P.
Scarlatti, Gabriella
Shattock, Robin J.
Sattentau, Quentin J.
Sanders, Rogier W.
机构
[1] Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam
[2] Control Laboratory of Veterinary Medicinal Products and Animal Facility, Directorate of Veterinary Medicinal Products, National Food Chain Safety Office, Budapest
[3] Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg
[4] Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan
[5] Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY
[6] Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London
[7] The Sir William Dunn School of Pathology, The University of Oxford, Oxford
基金
美国国家卫生研究院; 欧盟地平线“2020”;
关键词
D O I
10.1038/s41541-021-00398-1
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The immunogenicity of HIV-1 envelope (Env) trimers is generally poor. We used the clinically relevant ConM SOSIP trimer to compare the ability of different adjuvants (squalene emulsion, ISCOMATRIX, GLA-LSQ, and MPLA liposomes) to support neutralizing antibody (NAb) responses in rabbits. The trimers were administered as free proteins or on nanoparticles. The rank order for the adjuvants was ISCOMATRIX > SE > GLA-LSQ ~ MPLA liposomes > no adjuvant. Stronger NAb responses were elicited when the ConM SOSIP trimers were presented on ferritin nanoparticles. We also found that the GLA-LSQ adjuvant induced an unexpectedly strong antibody response to the ferritin core of the nanoparticles. This “off-target” effect may have compromised its ability to induce the more desired antitrimer antibodies. In summary, both adjuvants and nanoparticle display can improve the magnitude of the antibody response to SOSIP trimers but the best combination of trimer presentation and adjuvant can only be identified experimentally. © 2021, The Author(s).
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Stable, uncleaved HIV-1 envelope glycoprotein gp140 forms a tightly folded trimer with a native-like structure
    Kovacs, James M.
    Noeldeke, Erik
    Ha, Heather Jiwon
    Peng, Hanqin
    Rits-Volloch, Sophia
    Harrison, Stephen C.
    Chen, Bing
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) : 18542 - 18547
  • [42] Stoichiometric Analyses of Soluble CD4 to Native-like HIV-1 Envelope by Single-Molecule Fluorescence Spectroscopy
    Agrawal, Parul
    DeVico, Anthony L.
    Foulke, James S., Jr.
    Lewis, George K.
    Pazgier, Marzena
    Ray, Krishanu
    CELL REPORTS, 2019, 29 (01): : 176 - +
  • [43] Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles
    Linling He
    Natalia de Val
    Charles D. Morris
    Nemil Vora
    Therese C. Thinnes
    Leopold Kong
    Parisa Azadnia
    Devin Sok
    Bin Zhou
    Dennis R. Burton
    Ian A Wilson
    David Nemazee
    Andrew B. Ward
    Jiang Zhu
    Nature Communications, 7
  • [44] HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers
    Capucci, Silvia
    Wee, Edmund G.
    Schiffner, Torben
    LaBranche, Celia C.
    Borthwick, Nicola
    Cupo, Albert
    Dodd, Jonathan
    Dean, Hansi
    Sattentau, Quentin
    Montefiori, David
    Klasse, Per J.
    Sanders, Rogier W.
    Moore, John P.
    Hanke, Tomas
    PLOS ONE, 2017, 12 (08):
  • [45] Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles
    He, Linling
    de Val, Natalia
    Morris, Charles D.
    Vora, Nemil
    Thinnes, Therese C.
    Kong, Leopold
    Azadnia, Parisa
    Sok, Devin
    Zhou, Bin
    Burton, Dennis R.
    Wilson, Ian A.
    Nemazee, David
    Ward, Andrew B.
    Zhu, Jiang
    NATURE COMMUNICATIONS, 2016, 7
  • [46] Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics
    de la Pena, Alba Torrents
    Rantalainen, Kimmo
    Cottrell, Christopher A.
    Allen, Joel D.
    van Gils, Marit J.
    Torres, Jonathan L.
    Crispin, Max
    Sanders, Rogier W.
    Ward, Andrew B.
    PLOS PATHOGENS, 2019, 15 (07)
  • [47] Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits
    Anila Yasmeen
    Rajesh Ringe
    Ronald Derking
    Albert Cupo
    Jean-Philippe Julien
    Dennis R Burton
    Andrew B Ward
    Ian A Wilson
    Rogier W Sanders
    John P Moore
    Per Johan Klasse
    Retrovirology, 11
  • [48] Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits
    Yasmeen, Anila
    Ringe, Rajesh
    Derking, Ronald
    Cupo, Albert
    Julien, Jean-Philippe
    Burton, Dennis R.
    Ward, Andrew B.
    Wilson, Ian A.
    Sanders, Rogier W.
    Moore, John P.
    Klasse, Per Johan
    RETROVIROLOGY, 2014, 11
  • [49] Glycosylation of the HIV-1 Env V1V2 loop to form a native-like structure may not be essential with a nanoparticle vaccine
    Karch, Christopher P.
    Matyas, Gary R.
    Burkhard, Peter
    Beck, Zoltan
    FUTURE VIROLOGY, 2019, 14 (02) : 51 - 54
  • [50] Characterization of native-like HIV-1 gp140 glycoprotein expressed in insect cells
    Li, Tingting
    Zhang, Zhenyong
    Zhang, Zhiqing
    Qiao, Jiaming
    Rong, Rui
    Zhang, Yuyun
    Yao, Qiaobin
    Li, Zekai
    Shen, Honglin
    Huang, Fang
    Xue, Wenhui
    Gao, Shuangquan
    Li, Shaoyong
    Zheng, Qingbing
    Yu, Hai
    Zhang, Jun
    Gu, Ying
    Li, Shaowei
    Xia, Ningshao
    VACCINE, 2019, 37 (11) : 1418 - 1427