Node and edge nonlinear eigenvector centrality for hypergraphs (vol 4, 201, 2021)

被引:2
作者
Tudisco, Francesco
Higham, Desmond J.
机构
[1] School of Mathematics, Gran Sasso Science Institute, L’Aquila
[2] School of Mathematics, University of Edinburgh, Edinburgh
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/s42005-021-00745-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Network scientists have shown that there is great value in studying pairwise interactions between components in a system. From a linear algebra point of view, this involves defining and evaluating functions of the associated adjacency matrix. Recent work indicates that there are further benefits from accounting directly for higher order interactions, notably through a hypergraph representation where an edge may involve multiple nodes. Building on these ideas, we motivate, define and analyze a class of spectral centrality measures for identifying important nodes and hyperedges in hypergraphs, generalizing existing network science concepts. By exploiting the latest developments in nonlinear Perron−Frobenius theory, we show how the resulting constrained nonlinear eigenvalue problems have unique solutions that can be computed efficiently via a nonlinear power method iteration. We illustrate the measures on realistic data sets. © 2021, Crown.
引用
收藏
页数:1
相关论文
empty
未找到相关数据