A Sub-Seasonal Crop Information Identification Framework for Crop Rotation Mapping in Smallholder Farming Areas with Time Series Sentinel-2 Imagery

被引:8
|
作者
Xing, Huaqiao [1 ]
Chen, Bingyao [1 ]
Lu, Miao [2 ]
机构
[1] Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250101, Peoples R China
[2] Chinese Acad Agr Sci, Key Lab Agr Remote Sensing, Minist Agr & Rural Affairs, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
关键词
crop rotation mapping; a sub-seasonal framework; smallholder agriculture; feature selection; time series; Sentinel-2; Google Earth Engine; COVER; EXTENT; MAIZE; CHINA;
D O I
10.3390/rs14246280
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate crop rotation information is essential for understanding food supply, cropland management, and resource allocation, especially in the context of China's basic situation of "small farmers in a big country". However, crop rotation mapping for smallholder agriculture systems remains challenging due to the diversity of crop types, complex cropping practices, and fragmented cropland. This research established a sub-seasonal crop information identification framework for crop rotation mapping based on time series Sentinel-2 imagery. The framework designed separate identification models based on the different growth seasons of crops to reduce interclass similarity caused by the same crops in a certain growing season. Features were selected separately according to crops characteristics, and finally explored rotations between them to generate the crop rotation map. This framework was evaluated in the study area of Shandong Province, China, a mix of single-cropping and double-cropping smallholder area. The accuracy assessment showed that the two crop maps achieved an overall accuracy of 0.93 and 0.85 with a Kappa coefficient of 0.86 and 0.80, respectively. The results showed that crop rotation practice mainly occurred in the plains of Shandong, and the predominant crop rotation pattern was wheat and maize. In addition, Land Surface Water Index (LSWI), Soil-Adjusted Vegetation Index (SAVI), Green Chlorophyll Vegetation Index (GCVI), red-edge, and other spectral bands during the peak growing season enabled better performance in crop mapping. This research demonstrated the capability of the framework to identify crop rotation patterns and the potential of the multi-temporal Sentinel-2 for crop rotation mapping under smallholder agriculture system.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery
    Saadat, Mohammad
    Seydi, Seyd Teymoor
    Hasanlou, Mahdi
    Homayouni, Saeid
    AGRICULTURE-BASEL, 2022, 12 (12):
  • [42] Early-Season Crop Identification in the Shiyang River Basin Using a Deep Learning Algorithm and Time-Series Sentinel-2 Data
    Yi, Zhiwei
    Jia, Li
    Chen, Qiting
    Jiang, Min
    Zhou, Dingwang
    Zeng, Yelong
    REMOTE SENSING, 2022, 14 (21)
  • [43] Summer Maize Mapping by Compositing Time Series Sentinel-1A Imagery Based on Crop Growth Cycles
    Haifeng Tian
    Yaochen Qin
    Zheng Niu
    Li Wang
    Shishuai Ge
    Journal of the Indian Society of Remote Sensing, 2021, 49 : 2863 - 2874
  • [44] Generating Virtual Training Labels for Crop Classification from Fused Sentinel-1 and Sentinel-2 Time Series
    Teimouri, Maryam
    Mokhtarzade, Mehdi
    Baghdadi, Nicolas
    Heipke, Christian
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2023, 91 (06): : 413 - 423
  • [45] Multi-Year Crop Type Mapping Using Sentinel-2 Imagery and Deep Semantic Segmentation Algorithm in the Hetao Irrigation District in China
    Li, Guang
    Han, Wenting
    Dong, Yuxin
    Zhai, Xuedong
    Huang, Shenjin
    Ma, Weitong
    Cui, Xin
    Wang, Yi
    REMOTE SENSING, 2023, 15 (04)
  • [46] Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi'an County, Heilongjiang province, China
    Zhang, Hongyan
    Kang, Jinzhong
    Xu, Xiong
    Zhang, Liangpei
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 176
  • [47] Identification of non-photosynthetic vegetation areas in Sentinel-2 satellite image time series
    Solano-Corre, Yady Tatiana
    Carcereri, Daniel
    Bovolo, Francesca
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [48] CEREAL CROP IDENTIFICATION USING SENTINEL2 TIME SERIES, CASE OF SIDI BEL ABBES AREA
    Mansour, D.
    Attaf, D.
    Ghabi, M.
    39TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT ISRSE-39 FROM HUMAN NEEDS TO SDGS, VOL. 48-M-1, 2023, : 183 - 188
  • [49] Crop Mapping without Labels: Investigating Temporal and Spatial Transferability of Crop Classification Models Using a 5-Year Sentinel-2 Series and Machine Learning
    Rusnak, Tomas
    Kasanicky, Tomas
    Malik, Peter
    Mojzis, Jan
    Zelenka, Jan
    Svicek, Michal
    Abraham, Dominik
    Halabuk, Andrej
    REMOTE SENSING, 2023, 15 (13)
  • [50] A temporal-spatial deep learning network for winter wheat mapping using time-series Sentinel-2 imagery
    Fan, Lingling
    Xia, Lang
    Yang, Jing
    Sun, Xiao
    Wu, Shangrong
    Qiu, Bingwen
    Chen, Jin
    Wu, Wenbin
    Yang, Peng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 214 : 48 - 64