Ultrastable and High-Performance Silk Energy Harvesting Textiles

被引:57
|
作者
Ye, Chao [1 ]
Dong, Shaojun [1 ]
Ren, Jing [1 ]
Ling, Shengjie [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Silk; Energy harvesting textile; Co-wrapped yarn; Triboelectric nanogenerator; TRIBOELECTRIC-NANOGENERATOR; FIBER; STRENGTH; MORPHOLOGY; RIGIDITY; DEVICES; SENSOR; YARNS;
D O I
10.1007/s40820-019-0348-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Energy harvesting textiles (EHTs) have attracted much attention in wearable electronics and the internet-of-things for real-time mechanical energy harvesting associated with human activities. However, to satisfy practical application requirements, especially the demand for long-term use, it is challenging to construct an energy harvesting textile with elegant trade-off between mechanical and triboelectric performance. In this study, an energy harvesting textile was constructed using natural silk inspired hierarchical structural designs combined with rational material screening; this design strategy provides multiscale opportunities to optimize the mechanical and triboelectric performance of the final textile system. The resulting EHTs with traditional advantages of textiles showed good mechanical properties (tensile strength of 237 +/- 13 MPa and toughness of 4.5 +/- 0.4 MJ m(-3) for single yarns), high power output (3.5 mW m(-2)), and excellent structural stability (99% conductivity maintained after 2.3 million multi-type cyclic deformations without severe change in appearance), exhibiting broad application prospects in integrated intelligent clothing, energy harvesting, and human-interactive interfaces.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ultrastable and High-Performance Silk Energy Harvesting Textiles
    Chao Ye
    Shaojun Dong
    Jing Ren
    Shengjie Ling
    Nano-Micro Letters, 2020, 12 (01) : 147 - 161
  • [2] Ultrastable and High-Performance Silk Energy Harvesting Textiles
    Chao Ye
    Shaojun Dong
    Jing Ren
    Shengjie Ling
    Nano-Micro Letters, 2020, 12
  • [3] High-performance naturally crosslinked silk-based triboelectric nanogenerators for multimodal sensing and energy harvesting
    Wang, Qian
    Liu, Xinlong
    Han, Jing
    Xiao, Yana
    Tan, Di
    Yang, Yujue
    Zhang, Junze
    Xu, Bingang
    NANO ENERGY, 2025, 135
  • [4] A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting
    Yan, Cheng
    Gao, Yuyu
    Zhao, Shenlong
    Zhang, Songlin
    Zhou, Yihao
    Deng, Weili
    Li, Ziwei
    Jiang, Gang
    Jin, Long
    Tian, Guo
    Yang, Tao
    Chu, Xiang
    Xiong, Da
    Wang, Zixing
    Li, Yongzhong
    Yang, Weiqing
    Chen, Jun
    NANO ENERGY, 2020, 67
  • [5] Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting
    Zhang, Yong
    Jeong, Chang Kyu
    Yang, Tiannan
    Sun, Huajun
    Chen, Long-Qing
    Zhang, Shujun
    Chen, Wen
    Wang, Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (30) : 14546 - 14552
  • [6] A fluorinated polymer sponge with superhydrophobicity for high-performance biomechanical energy harvesting
    Peng, Zehua
    Song, Jian
    Gao, Yuan
    Liu, Jin
    Lee, Ching
    Chen, Guorui
    Wang, Zuankai
    Chen, Jun
    Leung, Michael K. H.
    NANO ENERGY, 2021, 85
  • [7] Silk Fibroin Based Conductive Film for Multifunctional Sensing and Energy Harvesting
    Dong, Xiaoyu
    Liu, Qiang
    Liu, Sai
    Wu, Ronghui
    Ma, Liyun
    ADVANCED FIBER MATERIALS, 2022, 4 (04) : 885 - 893
  • [8] High-performance triboelectric nanogenerator inspired by bionic jellyfish for wave energy harvesting
    Yang, Borui
    Li, Hengyu
    Wang, Zheng
    Wang, Jianlong
    Dong, Lu
    Yu, Yang
    Zhu, Jinzhi
    Zhu, Jianyang
    Cheng, Tinghai
    Cheng, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [9] Ultrastable carbazole-tethered conjugated microporous polymers for high-performance energy storage
    Ahmed, Mostafa
    Kotp, Mohammed G.
    Mansoure, Tharwat Hassan
    Lee, Rong-Ho
    Kuo, Shiao-Wei
    EL-Mahdy, Ahmed F. M.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2022, 333
  • [10] High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing
    Zhang, Jipeng
    Hu, Yang
    Lin, Xinghuan
    Qian, Xinyi
    Zhang, Lina
    Zhou, Jinping
    Lu, Ang
    CARBOHYDRATE POLYMERS, 2022, 291